
Visibility streaming

Objective

Results 

Real-time visualization

Target fps set to 25fps, 
obtained 26.2, using 56194 polygons.

Target fps set to 40fps, 
obtained 41.7, using 5703 polygons.
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TCP/IP

• Real time walkthrough
• Client-server architecture
• Applied to 3D city models

Bird’s eye view of a city model with 
reconstructed procedural models

Automatic frame rate adaptation during a walkthrough 
performed using a 56Kb/s network

L-system based procedural 
models

Transmission mechanism
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Remote Interactive Walkthrough of City Models
Jean-Eudes Marvie, Julien Perret, Kadi Bouatouch

Procedural model 
script (L-system). 
Transmitted one 
time

#VRML V2.0 utf8

# Extern PROTO invocation i.e. building model
EXTERNPROTO Build01 [   

field MFVec3f footprint  
field SFInt32 floors  
field MFInt32 adjacentHeights 

] 
"Library/build01.wrl "

# model instanciation
Build01{  

footprint [
12.2065,0,246.818, 32.1485,1.0,248.112,       
37.0815,0,228.059, 9.39851,1.0,229.303 ]  

floors  4
adjacentHeights [ 0, 0, 3, 3 ]

}

Rewriting on the 
client side, in 
parallel

One parameter file per building 

LODs generated for one building

Cell node example

Transmission results

Compression factors

Interactivity
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DEF cell_1 ConvexCell {
cellUrl [ "Cells/cell_100.wrl#cell_100" ,             

"Cells/cell_102.wrl#cell_102" ]
children [

SharelInline { url "Build/build07.wrl" },
SharelInline { url "Build/build49.wrl" }, 
… ]

coverageHints [ 0.55, 0.17, … ]
coord Coordinate {
point [ 45.0203 0 305.857, 34.3379 0 305.329,

41.9268 0 317.121, 41.9268 4 317.121,
34.3379 4 305.329, 45.0203 4 305.857 ]      

}
cellCoordIndex [ 0, 1, 2, -1, 3, 4, 5, -1,

1, 0, 5, 4, -1 , 2 ,1 , 4 ,
3, -1, 0, 2, 3 , 2 , -1 ]

}

Downloading quality over navigation 
time. Using pre-fetching or not.

Frame rate over navigation time. Target 
frame rate set to 25fps.

Model size = 1,09 GB
Database size = 541.9 KB

Cell-to-object visibility
relationships

• One file per object :
- building, road, crossroad, park.

• One file per cell :
- each cell refers to its potentially

visible objects.

Streaming

1- First cell is downloaded
- potentially visible objects are 

also downloaded

2- Navigation starts

3- Future visited cells are pre-fetched
- missing objects are downloaded

Navigation space

Navigation is constrained to 
roads and crossroads (the cells)

Memory management
Client memory is limited
⇒ How to release some memory ?

1- Using the partial adjacency graph
- cells already downloaded

2- Remove the furthest cells & objects
- can be swapped on local disk

Average Coverage Hints (ACH) Automatic adaptation
A pre-computed selection metric for level of details Using LODs and ACHs to match a target frame rate

No pre-fetching Pre-fetching

Off-line ACH computations

On-line ACH computations

For each cell :

• height camera positions per cell

• six directions per camera position

• render the PVS using color Ids

1- pixel count for each color (object)

2- normalize values using total pixel number

3- get a percentage of coverage for each    
object (the ACH)

4- store the ACHs values into the cell

For the current cell :

1- perform frustum culling on potentially   
visible objects

2- renormalize ACH values of objects that 
are found to be visible

3- The obtained ACHs represent the visual 
importance of each object in the new
frame

• Analyze frame rate history             
• Analyze polygon budget history

Share a polygon budget 

Deduce a polygon budget 
for the new frame

The polygon budget     is shared by 
the visible objects

LOD automatic selection 

• Each LOD node i selects its level of detail whose polygon   
count is nearest to 

• The portion of      that is not used for the level is given up to 
the next LOD node.
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