
Visibility streaming

Objective

Results

Real-time visualization

Target fps set to 25fps,
obtained 26.2, using 56194 polygons.

Target fps set to 40fps,
obtained 41.7, using 5703 polygons.

Compressed database

Server
Database 1
Database 2
Database 3

Client 1
Walkthrough

Model 1

Client 2
Walkthrough

Model 2

Client 3
Walkthrough

Model 2

TCP/IP

• Real time walkthrough
• Client-server architecture
• Applied to 3D city models

Bird’s eye view of a city model with
reconstructed procedural models

Automatic frame rate adaptation during a walkthrough
performed using a 56Kb/s network

L-system based procedural
models

Transmission mechanism

Script

Parameter 0

Parameter 1

Parameter 2

Parameter n

Model 0

Model 1

Model 2

Model n

Rewriting

Server ClientNetwork

Remote Interactive Walkthrough of City Models
Jean-Eudes Marvie, Julien Perret, Kadi Bouatouch

Procedural model
script (L-system).
Transmitted one
time

#VRML V2.0 utf8

Extern PROTO invocation i.e. building model
EXTERNPROTO Build01 [

field MFVec3f footprint
field SFInt32 floors
field MFInt32 adjacentHeights

]
"Library/build01.wrl "

model instanciation
Build01{

footprint [
12.2065,0,246.818, 32.1485,1.0,248.112,
37.0815,0,228.059, 9.39851,1.0,229.303]

floors 4
adjacentHeights [0, 0, 3, 3]

}

Rewriting on the
client side, in
parallel

One parameter file per building

LODs generated for one building

Cell node example

Transmission results

Compression factors

Interactivity

1487
1562

1666
1724

1818

2127

1000

1200

1400

1600

1800

2000

2200

199790 491984 784178 1076372

Geometric model memory size (KBytes)

C
om

pr
es

si
on

 fa
ct

or

(300 Bytes)

(12 KBytes) (20 ms)

DEF cell_1 ConvexCell {
cellUrl ["Cells/cell_100.wrl#cell_100" ,

"Cells/cell_102.wrl#cell_102"]
children [

SharelInline { url "Build/build07.wrl" },
SharelInline { url "Build/build49.wrl" },
…]

coverageHints [0.55, 0.17, …]
coord Coordinate {
point [45.0203 0 305.857, 34.3379 0 305.329,

41.9268 0 317.121, 41.9268 4 317.121,
34.3379 4 305.329, 45.0203 4 305.857]

}
cellCoordIndex [0, 1, 2, -1, 3, 4, 5, -1,

1, 0, 5, 4, -1 , 2 ,1 , 4 ,
3, -1, 0, 2, 3 , 2 , -1]

}

Downloading quality over navigation
time. Using pre-fetching or not.

Frame rate over navigation time. Target
frame rate set to 25fps.

Model size = 1,09 GB
Database size = 541.9 KB

Cell-to-object visibility
relationships

• One file per object :
- building, road, crossroad, park.

• One file per cell :
- each cell refers to its potentially

visible objects.

Streaming

1- First cell is downloaded
- potentially visible objects are

also downloaded

2- Navigation starts

3- Future visited cells are pre-fetched
- missing objects are downloaded

Navigation space

Navigation is constrained to
roads and crossroads (the cells)

Memory management
Client memory is limited
⇒ How to release some memory ?

1- Using the partial adjacency graph
- cells already downloaded

2- Remove the furthest cells & objects
- can be swapped on local disk

Average Coverage Hints (ACH) Automatic adaptation
A pre-computed selection metric for level of details Using LODs and ACHs to match a target frame rate

No pre-fetching Pre-fetching

Off-line ACH computations

On-line ACH computations

For each cell :

• height camera positions per cell

• six directions per camera position

• render the PVS using color Ids

1- pixel count for each color (object)

2- normalize values using total pixel number

3- get a percentage of coverage for each
object (the ACH)

4- store the ACHs values into the cell

For the current cell :

1- perform frustum culling on potentially
visible objects

2- renormalize ACH values of objects that
are found to be visible

3- The obtained ACHs represent the visual
importance of each object in the new
frame

• Analyze frame rate history
• Analyze polygon budget history

Share a polygon budget

Deduce a polygon budget
for the new frame

The polygon budget is shared by
the visible objects

LOD automatic selection

• Each LOD node i selects its level of detail whose polygon
count is nearest to

• The portion of that is not used for the level is given up to
the next LOD node.

PACHP ii •=

P

Pi

Pi

