A Vrml97-X3D Extension for Massive Scenery Management
in Virtual Worlds

Jean-Eudes Marvie*
INSA of Rennes

Abstract

In this paper we present a VRML97-X3D extension to describe pre-
computed visibility relationships in the context of progressive trans-
mission as well as real time visualization of massive 3D sceneries.
The extension we propose can be used to describe cell-to-cell, cell-
to-objects as well as hybrid visibility relationships using a generic
cell representation. Thanks to these relationships it is possible to
represent indoor and outdoor sceneries using the same VRML97-
X3D representation. We also present some new mechanisms that
allow to perform instance sharing of objects described into separate
files. These mechanisms allow to minimize the size of the set of
VRML97-X3D files that are used for the database description as
well as the amount of main memaory required on the client side to
visualize the scenery. In addition to these new mechanisms we also
explain how we manage the memory on the client side and how we
perform data pre-fetching according to the viewpoint movements.
Finally we present several tests performed on different kinds of
sceneries such as city and architectural models.

CR Categories: 1.3.2 [Computer Graphics]: Graphics Systems—
Remote systems; 1.3.6 [Computer Graphics]: Methodology and
Technics—Languages, Standards

Keywords: VRML97-X3D extension, massive sceneries, progres-
sive transmission, visibility, data management, pre-fetching, inter-
activity, city models, architectural models.

1 Introduction

Thanks to VRML97 [Carey and Bell 1997], and more recently
X3D [Web3D 2002], it is possible to describe very complex virtual
worlds. Since the first purpose of such worlds is to be transmitted
across networks, their high memory size can rapidly become a ma-
jor limitation for the authors. Indeed, even when using Inline lazy
download mechanism, ProximitySensor or VisibilitySensor
nodes it is very difficult to distribute the transmission of such 3D
models over the navigation time and to tune the client’ main mem-
ory usage.

We propose the following classification of the different parts that
make up a virtual world. In most virtual worlds only a small part of
the 3D model is globally dynamic. That is to say, only few objects
of the world, such as flying birds or cars, will move across the whole

*e-mail: jemarvie@irisa.fr
Te-mail:kadi@irisa.fr

Kadi Bouatouch’
University of Rennes

scene. Some other objects of the world, such as the doors of a
building, are said to be locally dynamic. And finally most parts of
the world, such as building walls and roofs or terrains, are static
objects. In this paper, the part of the world made up of static and
locally dynamic objects is called scenery.

In this classification we can notice that most of the static ge-
ometry is usually composed of large sets of opaque polygons. For
example, in urban scenes the walls of a building generate massive
occlusion when walking into a street. For indoor scenes, when
walking into a room only few other rooms are still visible to the
user because of the occlusion due to the walls of this room. Thus,
as the geometry that induces this kind of occlusion is the static one,
it is possible to pre-compute the subset of the scenery that will be
potentially visible from any point of a given street or a given room.
Such a set is called potentially visible set (PVS).

This kind of visibility relationship is, in our opinion, very in-
teresting for web 3D applications. Indeed, if the client (i.e. the
browser) knows in which street the viewpoint is located, it just
needs to download the PVS of this street to construct the visual
representation of the world. When the current street changes, the
browser just has to download the missing geometry and to remove
the geometry which is not potentially visible anymore. Thus, only
the globally dynamic geometry has to be downloaded at the connec-
tion whereas the scenery downloading can be distributed over the
navigation time. Using this mechanism, the browser is able to limit
the size of the data to be transmitted across the network and to be
rendered using the available graphics hardware. Finally, it is also
able to minimize the amount of main memory (RAM) to be used
during the remote navigation.

Because this mechanism introduces so many significant opti-
mizations, we developed a VRML97 extension that allows to use
such relationships to download and visualize the scenery of virtual
worlds. The globally dynamic part of the world is managed using
the classical VRML97 mechanisms. Since the purpose of our ex-
tension is visualization, we suppose the detection of the streets and
the rooms as well as the visibility computation to be performed as a
pre-processing using one of the many existing algorithms. Some of
them are presented in the following section. In this paper, we will
focus on the VRML97 representation and the management of such
representation on the server and on the client side.

2 Related works

As we said in the introduction, the solution we propose uses the
output of some algorithms that pre-compute conservative visibility
relationships. A survey of visibility for walkthrough applications
can be found in [Cohen-Or et al. 2002]. Among the existing algo-
rithms, some are specially designed for architectural models [Airey
et al. 1990; Teller and Séquin 1991; Teller 1992; Meneveaux et al.
1997]. In [Teller and Séquin 1991], indoor scenes are subdivided
into cells using a constrained BSP [H.Fuchs et al. 1980]. The re-
sulting cells correspond to the rooms of the scene. A visibility
relationship is established between the cells using a set of portals
that are extracted during the subdivision process. In [Wonka et al.
2000], which is specially designed for urban scenes, each street is a

cell and the potentially visible set of objects associated with a cell
is computed using occluder fusion and is hardware accelerated. Fi-
nally, some more general solutions [Durand et al. July 2000; Schau-
fler et al. 2000] can be used in both cases. Many other solutions
exist and most of them are described in [Cohen-Or et al. 2002]. In
recent works, new solutions were presented to extract cells and por-
tals from indoor scenes [Haumont et al. 2003] and from indoor and
outdoor scenes [Lerner et al. 2003].

In most of these works, the result of the pre-computation is
generally used for local visualization. Nevertheless, some op-
timization such as data pre-fetching or cache management tech-
niques [Funkhouser 1996] can be easily transposed to remote envi-
ronments. The difference between such systems and a web browser
is the latency that is needed to fetch some data from the server. In-
deed, in the local solution, the data have only to be transferred from
the hard drive to the RAM. Whereas for remote systems the data
have to be downloaded from a remote server, using most of time a
low bandwidth connection. Some other solutions such as intermedi-
ate PVS representation [Koltun et al. 2001] or delta PV'S representa-
tion [Durand et al. July 2000] can be used to minimize the memory
size of the PVS descriptions. These optimizations are still inter-
esting for remote connections since they reduce the amount of data
to be transmitted through the network. Discussions about the PVS
storage problem can be found in [Cohen-Or et al. 2002; Cohen-Or
et al. 1998] and specially in [Cohen-Or and Zadicario 1998] that
deals with visibility streaming. Finally, a VRML97 extension for
the management of 3D scenes using cells and portals is proposed
in [Grahn 2000]. We think this proposal to be very interesting but
unfortunately limited due to the kind of visibility relationship used.

3 Basis concepts

In this section, we introduce the basis concepts and definitions of
our extension. We first give the definition of a cell as well as the
prototype of the node that is used to describe such a cell. We then
explain how the cell descriptions should be distributed among sep-
arate files and the method we utilize to refer to these cells. Finally,
we explain how we track the cell that contains the current viewpoint
in order to determine the geometry that is potentially visible from
this viewpoint.

3.1 Convex cell

As we said previously, we rely on algorithms that are able to com-
pute visibility relationships for different parts of the virtual worlds
such as the streets of a city or the rooms of a building. According
to the nature of the algorithm, the spatial description of these places
have to be done using either two dimensional polygons (called foot-
prints) or three dimensional polyhedral volumes. In both cases, the
spatial description is called a cell.

In our extension, a cell is a part of the whole world which is de-
limited by a convex volume whose boundaries are described using
a set of convex polygons. A cell has to be convex in order to re-
duce the computation costs during the navigation. Such a cell is
described using a new VRML97 built-in node named ConvexCell.
The prototype of this new node is detailed in figure 1. The fields
coord and coordIndex are used exactly the same way as for an
IndexedFaceSet node. They are used to describe the convex hull
of the cell. The polygons used for the description must be con-
vex and have the same orientation, either clockwise or counter-
clockwise. This last constraint is used to determine rapidly if a
point is located either inside or outside a cell. The other fields
that are used will be specified in the following sections. Note that
each field is of type field. Presently, we constrain the fields to
be static because all our sceneries are pre-processed (subdivision,

visibility) automatically. Therefore generating dynamic visibility
relationships seems to be extremely difficult.

ConvexCell {
field MFInt32 cadjIndex []
field MFString cellUrl]
field SFNode coord NULL
field MFInt32 coordIndex []
field MFInt32 cpvsIndex []
field MFNode 1lpvs [1
field MFNode opvs]

Figure 1: ConvexCell node prototype.

3.2 Linked viewpoint

During the navigation, the cell that contains the current viewpoint
is used do determine the set of geometry to be downloaded and dis-
played. This cell will be called current cell for now on. In order
to determine rapidly the current cell, we added a new field to the
usual Viewpoint node that refers to the cell in which it is located.
Thanks to this additional field, finding the current cell is imme-
diate when the Viewpoint node gets bound. This field is named
cellUrl and contains an extended URL pointing to the cell. The
extended URL mechanism is explained in the following section.
If the cell that is referred to exists and if its convex hull contains
the viewpoint’s position, the cell and the viewpoint are said to be
linked.

3.3 Extended URL

Recall that we aim at distributing the downloading over the nav-
igation time. For this reason, the cell descriptions should not be
stored into a global file. In our extension, even if it is possible to
do so when preparing a database for a local usage, we usually store
each cell description into a separate file. Thanks to this, when the
browser needs the description of a cell, it just has to download the
associated file. However, it could be interesting to cluster the cell
descriptions into a reduced set of files, each one containing some
cell descriptions that will be needed at the same time. Doing so
would reduce the amount of requests to be sent to the server and
would consequently reduce the network utilization.

As the client must be able to access a given cell stored into an
external file together with some other cells, we introduced the use
of extended URLs. An extended URL is an URL with a syntax sim-
ilar to the one used for the URLS that refers to external prototypes.
The first part of an extended URL refers to the file that contains the
cell and the second part is the name of the cell using the DEF mecha-
nism. The two parts are separated using the # symbol. The extended
URL "cells_0.wrl#C2" refers to the cell named C2 which is de-
fined into the file cells_0.wrl. In order to be accessed by the
browser, the cell has to be described as a root node of its associated
file. If several cells are using the same name, the last cell that is
defined is used. Finally, if the extended URL only contains the #
symbol as well as the second part, the referred cell is stored into the
file where the extended URL is written.

3.4 Navigation space

As we saw in section 3.2 the current cell is determined using the
extended URL that is stored in the bound Viewpoint node. Be-
cause the position of the viewpoint changes during the navigation,
the current cell URL has to be updated whenever the viewpoint gets

into a different cell. Because we need that this update be fast, each
cell contains a list of extended URLS that refers to its adjacent cells.
The adjacent cells of a given cell are the cells that can be directly
accessed from this cell.

Whenever the viewpoint position changes, we check if it lies in
the current cell. If the new position is not inside the current cell,
we check the position against each adjacent cell until a cell that
contains the new position is found. If such a cell is found, it be-
comes the current cell and the ce11Ur1 field of the viewpoint node
is updated with the extended URL of the new cell. Otherwise, the
viewpoint position is updated as if a collision with the convex hull
of the current cell occurred. When using event routing to animate
the viewpoint, the author must ensure that the position path passes
through a set of successive adjacent cells. Otherwise, the animation
of the viewpoint is not performed completely and the viewpoint re-
mains blocked in the last current cell for which no adjacent cell can
be found.

In a virtual world, the set of cells that can be accessed through a
viewpoint binding or through an adjacency relation is called navi-
gation space. In a virtual world where only linked viewpoints are
used, the user navigation is limited to the navigation space. In an
urban model, the navigation space can be made up of the street net-
work of the city. In an indoor scene, the navigation space can be
made up of the rooms of the building.

Finally, the collisions with the geometry are only tested against
the geometry that is contained in the current and the adjacent cells.
This reduction of collision tests gets significant when visualizing
large sceneries.

4 \Visibility relationships

Now that we have seen the basis concepts of our extension we can
have a look at the different kinds of visibility relationships that can
be used for scenery representation. In the two first following sec-
tions we present the cell-to-geometry as well as the cell-to-cell vis-
ibility relationships and we explain, through examples, how and
when these two kinds of relationship should be used. Finally, in
a third section, we explain how it is possible to merge these two
kinds of relationship in order to minimize the size of the database,
the amount of data to be transmitted over a network and the memory
costs during the visualization.

4.1 Cell-to-geometry visibility

The cell-to-geometry visibility relationship is illustrated by the fig-
ure 2. With this kind of relationship, each cell contains a set of ref-
erences to its potentially visible objects. For example, in an urban
scenery, each street could refer to the buildings that are potentially
visible. For now on, the set of potentially visible objects associated
with a cell will be called object PVS (OPVS).

During the navigation, the OPVS of the current cell is first down-
loaded. It is then frustum culled before each frame construction,
then the objects of the OPVS that are in the view frustum are ren-
dered.

With this kind of relationship, one can notice a potential redun-
dancy within the OPVSs of some cells. Imagine a public square,
with a column at the middle of a urban model. Suppose the naviga-
tion space of the public square is composed of a set of cells placed
around the column. In this case, the column will be potentially vis-
ible from each cell. For this reason, the description of the column
must be done in a separate file that must be downloaded only once.
Furthermore, the instantiation of the column model should also be
done only once. And finally, each cell of the square should refer to
this column as shared object. Thus, there is no more redundancy
of objects description but only a redundancy of object references.

i

» | *c@ W W,.“L.
| b4 “! V/

Figure 2: Cell-to-geometry visibility relationship. The outlined
transparent volume is the convex hull of the cell for which the re-
lation is depicted. The buildings and the ground that are in the
foreground are the objects that are potentially visible from the cell
(its OPVS). The geometry of the background is not visible from the
cell.

In our extension, this kind of external reference is done using the
shared inline mechanism which is detailed in section 5.1.

Note that the shared inline mechanism should be used for any ob-
ject of the scenery. Thanks to this file distribution, the downloading
of the scenery’s objects can be distributed over the navigation time.
Furthermore, the disk space required on the server side as well as
the RAM and disk cache utilized by the browser are minimized.

In the extension, the OPVS references of each cell are depicted
into its description. Even if the objects of the OPVS can be referred
to using the shared inline mechanism, we let the possibility to create
some databases for a purpose of local utilization. For this reason,
the OPVS is stored into the opvs field of the ConvexCell node,
which is of MFNode type.

When authoring a database for local usage, all the ConvexCell
nodes can be stored into the root file and their opvs field can be
filled with the object descriptions. Then, each object description
can be shared by the cells using the classical DEF/USE mechanism.

For a remote usage, each cell and each object can be described
into a separate file. In this case, the opvs field of each ConvexCell
node is then filled using SharedInline nodes that implements the
shared inline mechanism. Each SharedInline node refers to the
shared objects described into a separate file. The specification of
the SharedInline node is given in section 5.1.

4.2 Cell-to-cell visibility

The second visibility relationship is called cell-to-cell and is de-
picted in the figure 3. With this kind of relationship, each cell con-
tains the description of its own geometry as well as a set of ref-
erences to its potentially visible cells. For example, in an indoor
scenery, each cell associated with a room contains the geometry of
the given room and refers to a set of other cells (i.e. rooms) that are
potentially visible. For now on, the set of potentially visible cells
associated with a cell will be called cell PVS(CPVS) and the set of
objects contained by a cell will be called local PVS (LPVS).
During the navigation, the CPVS of the current cell is first down-
loaded. Then, the following computations are performed for each
frame construction. First, the cells of the CPVS are frustum culled
using their convex hull description. Then, the objects of the LPVS

‘ﬁ, b '—7 7»77 -’7 — L8 7""—_77 = = ""’ -7

Figure 3: Cell-to-cell visibility relationship. The outlined transpar-
ent volume in the background is the convex hull of the cell C for
which the relation is depicted. The outlined transparent volume in
the corridors are the convex hulls of the cells that are potentially
visible from the cell C (its CPVS). Each cell refers to the geometry
(walls, furniture, etc.) contained in its convex hull as its local PVS
(its LPVS).

of the current cell as well as the objects of the LPVS of the cells
that were found to be visible are then frustum culled. Finally, only
the objects that are found to be in the view frustum are rendered.
Because each cell of the CPVS is frustum culled before its LPVS is
processed, the geometry of its LPVS has to be completely contained
in its convex hull.

As we saw in the section 3.4, each cell contains a set of extended
URLSs that refer to its adjacent cells. The same mechanism is used
to store the references to the cells of the CPVS of each cell. Note
that some cells can be adjacent to a cell as well as potentially vis-
ible from this same cell. For this reason, the ConvexCell node
contains three different fields to store the adjacent cells references
as well as the cells references of the CPVS. The first field named
cellUrl is used to store the list of all the extended URLSs that are
used. The second field named cadjIndex is a list of indices that
refer to some extended URLS, stored in the ce11Ur1 field, that rep-
resent the references to the adjacent cells. Finally, the field named
cpvsIndex is a list of indices that refer to some extended URLSs,
stored in the ce11Ur1 field, that represent the references to the cells
of the CPVS.

In addition, the objects of the LPVS are described in the field
1pvs which is of type MFNode. Since the LPVS of a cell is con-
tained in the convex hull of the cell, the description of the objects
that make up the LPVS can be put directly into the cell description.
Nevertheless, we will see in section 5 that it is also possible to use
instance sharing for some objects described into several LPVSs.

4.3 Hybrid visibility

As we can see, the two previous visibility relationships present
some interesting advantages. The purpose of hybrid visibility re-
lationship it to merge these advantages into a single representation.
Let’s have a look at the urban scenery depicted in Figure 4. This
time, imagine that besides the roads, the street pavements and the
building, we also use street lamps and some other objects that can
be usually found in the streets of such a model. Thus, using the
cell-to-object visibility relationship would introduce large sets of
references to describe the OPVS of each cell. In contrast, since we

Figure 4: Hybrid visibility relationship. The outlined transparent
volume in the foreground is the convex hull of the cell C for which
the relation is depicted. The outlined transparent volume in the
background is the convex hull of the cell C; which composes the
CPVS of the cell C. The street lamps and the pavements are in the
LPVS of the cell C;. The buildings are potentially visible from both
cell and represent their OPVSs.

want the navigation space to be made only of streets, it is not pos-
sible to use cell-to-cell visibility relationship because the geometry
of buildings is not contained in the cells.

Thus, we propose the use of hybrid visibility to represent such a
scenery. In this case, the buildings can be referred to by using the
cell-to-object visibility relationship. Then, the geometry of each
street can be described into the cell associated with this street. That
is to say, if the convex hull of a cell contains the geometry of the
street lamps, these latter can be described into the description of this
cell as its LPVS. And finally, a cell-to-cell visibility relationship
can be used. Thanks to this hybrid representation, if a cell contains
50 street lamps, the other cells would not have to refer to these 50
street lamps but only to the cell that contains the description of these
street lamps. If we now imagine the high number of objects that can
be placed into a street, we can easily imagine the gain obtained by
using such a relationship. For now on, the union of the OPVS and
the CPVS of a cell will be called hybrid PVS (HPVS). Recall that
each cell can also contain a LPVS.

During the navigation, the OPVS as well as the CPVS of the
current cell are first downloaded. Then, the following computations
are performed for each frame construction. First, the cells of the
CPVS are frustum culled using their convex hull description. Then,
the objects of the LPVS of the current cell as well as the objects of
the LPVS of the cells that were found to be visible are then frustum
culled. At the same time, the objects of the OPVS of the current
cell are also frustum culled. Finally, only the objects that are found
to be in the view frustum are rendered. To sum up, the HPVS of the
current cell is first downloaded and for each frame, only the objects
of the HPVS that lie in the frustum are rendered.

5 Database optimizations

In this section we give some precisions about the shared inline
and the shared transform mechanisms that are used to optimize the
databases.

5.1 Shared inline mechanism

The shared inline mechanism, introduced in section 4.1, is moti-
vated by the following problem. An object can belong to the OPVS
of two different cells. The VRML97 solution that could be pro-
posed is to use Inline nodes to refer to some geometry stored into
a separate file. The problem is that the inline mechanism allows
to refer to an extern file multiple times but produces one instance
of the scene, described into the file, for each Inline node used.
Therefore, the inline mechanism allows to download an extern file
only once and to instantiate its content as many times it is used
[Carey and Bell 1997, section 3.25].

In our extension, we want to refer several times to the same in-
stance of a shared object. Consequently we introduced a new node
named SharedInline whose prototype is exactly the same as for
the VRMLO97 Inline node. With the SharedInline node, the re-
ferred file is downloaded once and its content is instantiated once
too. Thus, if another SharedInline node refers to the same file, it
uses the instance that was already created by the previous node.

Note that the SharedInline node can be used anywhere as the
classical Inline node would be. But when using this kind of node,
one should take care of the fact that only one instance of the content
is referred to. Thus, it would certainly not be a good idea to refer
to an extern file that contains some interactively animated objects.
For example, suppose the doors of an indoor scene are animated
through a TouchSensor node. If only one instance of that door is
referred to using a SharedInline node, all the doors of the world
would open or close when the user touches one of them.

In counterpart, we saw in section 4.1 that the static objects re-
ferred to within the OPVSs of the scenery should be stored into
separate files and accessed through SharedInline nodes. An-
other interesting point of this mechanism is instance sharing among
different LPVSs. In our urban scene example, the street lights
might all be of the same model. Consequently, one could use
only one description of the street lamp model and each cell can
use SharedInline nodes to refer to the lamp several times within
its own LPVS (Figure 5). The placement of the lamps is then per-
formed through the use of Transform nodes, each one having a
SharedInline node as child. In the same way, this mechanism
can be used for indoor scenes where static objects, such as tables,
are used several times in different rooms.

5.2 Shared transform mechanism

The shared transform is the last mechanism of our extension and
is provided for a purpose of optimization. As it is described in
section 3.1 the volume that is used to describe a cell has to be con-
vex. Thus, the non-convex rooms have to be subdivided into con-
vex cells. Recall that the geometry of the LPVS of a cell has to
be contained in the convex hull of this cell. Consequently, if the
cell-to-cell mechanism is used, which is the best solution for in-
door scenes, the geometry of a non-convex room has to be cut and
placed into the cells resulting from its subdivision. The amount of
objects that have to be cut can be very high. For example it can
be necessary to cut the geometry of the floor, the ceiling, the walls
and some of the furniture that lying within the two cells. Cutting so
much geometry would introduce many new vertices and polygons
into the scenery, which can lead to a performance breakdown during
the network transmission as well as during the rendering process.
Furthermore, instance sharing cannot be utilized anymore because
the objects might not be cut the same way.

To overcome this problem, the geometry of a non-convex room
is not cut. Rather, each cell of the room refers to the shared geom-
etry of the room as an OPVS, using the shared inline mechanism,
and the geometry completely contained in a cell is described in its
LPVS. Finally, a cell-to-cell visibility relationship is maintained.
Even if this solution works properly, if a non-convex room R, that

Cell File 01 Cell File 02
DEF C01 ConvexCell { DEF C02 ConvexCell {
lpvs [lpvs [

Transform { Transform {

children children
SharedInline { SharedInline {
url "lamp.wrl#lol" url "lamp.wrl#1l01l"
} }

} }

Transform { Transform {

children
SharedInline {
url "lamp.wrl#1l01l"

children
SharedInline {
url "lamp.wrl#lo1l"
} }
} }
] 1

\A 4

Lamp File

DEF 101 Shape {
#Lamp description —
}

\ 4

Figure 5: Instance sharing using shared inline mechanism. Each
cell contains two lamps. Each lamp is described using a shared
instance that is described into a separate file and referred to by
SharedInline nodes. Each lamp instance is placed using a classi-
cal Transform node.

contains a shared object O, is split into two cells, C! and C2, that
can be seen from many other cells C;, the reference to the object
O must be stored in the OPVS of each cell C;. Consequently, each
cell C; must refer to the object O as well as to the cells C! and C?
that might contain some other objects into their LPVSs. Thus, if
the scenery contains many shared objects, the amount of references
to be used might increase rapidly. This overhead can be prevented
by using the shared inline mechanism to make the LPVS of the two
cells C! and C2 share the object O. This solution is efficient in term
of memory space but if the two cells are both parts of a CPVS, their
respective LPVS will be displayed and the shared object O will be
displayed twice.

To prevent multiple rendering of the same instance we intro-
duced the shared transform mechanism. This mechanism is im-
plemented with a new node named SharedTransform. This node
has the same prototype as the Transform node. However, this node
is used for rendering only once per frame construction. That is to
say, if such a node is defined and used several times in the same
file, only the first instance will be rendered but not the others. Fur-
thermore, if such a node is defined into a file that is referred to by
several SharedInline nodes, it is used only once, say for the first
SharedInline node that is encountered during the scene graph
traversal. Note that it is delicate to use this node and one should take
care of the consistency between the SharedInline nodes when us-
ing this mechanism.

In the indoor example outlined in figure 6, a chair that is shared
by two cells should be described into a separate file Fy. Then, each
cell should contain a SharedInline node in its LPVS that refers
to a shared file Fs. The file Fs contains a SharedTransform node
whose child is a SharedInline node that refers to the file Fq in
which the chair is described. Thanks to the intermediate file Fs, the
shared model of the chair can be used in the LPVS of both cells
and rendered only once per frame. Note that an intermediate file Fs
has to be used for each chair model that is shared by these two cells.
Finally if some other chairs are fully contained by one of these cells,
they can be placed using SharedInline nodes that refers directly
to the file Fy.

Cell File 01 Cell File 02
DEF CO01 ConvexCell { DEF CO01 ConvexCell {
lpvs [lpvs [

SharedInline {
url "fs.wrl#trsol"

Transform {

children }
SharedInline { Transform {
url "fd.wrl#chairol"

} children
} SharedInline {
SharedInline { url "fd.wrl#chairol"
url "fs.wrl#trsol" }

} }
]]

y y

A4

Placement file Fs

DEF trs0l SharedTransform {
A 4

children Definition file Fd
SharedInline {

url "fd.wrl#ichairo1l" DEF chair0l Shape {
} # chair definition

} }

v

Figure 6: Instance sharing using shared inline and shared transform
mechanisms. Each cell contains one instance of the chair described
into the file Fy that is referred to by SharedInline nodes and placed
using classical Transform nodes. Another chair instance is shared
by the two cells by using the intermediate file Fs that places the
chair into the world coordinate system using a SharedTransform
node.

6 Database management

In the previous sections we presented solutions to describe the nav-
igation space as well as the visibility relationships into a set of
VRML97 files. Now that we have seen how to construct and op-
timize such a database on the server side we can have a look at the
management of the data on the client side.

Thanks to the different kinds of relationship that are used in our
extension, it is possible to perform data pre-fetching during the
remote navigation as well as memory management. Some solu-
tions are presented in [Funkhouser 1996] but for a purpose of local
database access. The difference in our context is that the data to
be pre-fetched are placed on a remote server and that the browser
contains only a part of the navigation space at a given time. In-
deed, since the navigation space is downloaded part by part over
the navigation time, the browser can only access the cells and their
relationships descriptions that have been already downloaded.

Another interesting point in our extension is the possibility to
manage the client main memory (RAM). Indeed, if the client ma-
chine does not have enough memory space to store the whole
scenery, it is possible to select and remove some unused cells or
objects in order to download new cell or object descriptions. Some
solutions are also presented in [Funkhouser 1996] but still use the
whole navigation space description.

6.1 Pre-fetching

In a remote context, because downloading some data can take a long
time (more than a minute), pre-fetching future required data while
visualizing a part of the scenery is inevitable. In our extension, pre-
fetching consists in finding and downloading the cell, as well as its
associated HPVS, that will be visited after the current one. Unfor-
tunately, this operation cannot always be done because the browser

can only access the data that have been already downloaded. For
this reason, the downloading operations consist of three different
steps. Each of these steps can occur during navigation but only if
its previous steps have been already completed. For example, the
third step can be performed for ten consecutive frames but only if
the first and the second steps are not required during these frames.

The first step, which is a fetching step, is performed when the
navigation starts or when a different viewpoint gets bound. In this
case, the current cell as well as its associated HPVS are downloaded
synchronously. Then, once all the data are downloaded, the user
can start the navigation through the current cell and visualize its
associated HPVS. At this moment, only the current cell is stored in
the client’s memory and the browser has no information, but only
the reference to the adjacent cells to perform pre-fetching.

In a second step, which is a pre-fetching step, the cells adjacent
to the current cell as well as their HPVSs are downloaded asyn-
chronously. The adjacent cells are first downloaded because they
contain the references to the cells or objects that make up their own
HPVSs. Since the cells and the objects of the scenery are all shared
objects, their associated files are downloaded only if the browser
does not already contain an instance of their content. Furthermore,
once a cell is instantiated on the client side, the objects of its asso-
ciated LPVS are immediately downloaded asynchronously.

Once the first adjacent cell is downloaded, the third step can start
pre-fetching. This step, which is in our opinion the most important,
relies on motion prediction to find the next adjacent cell that will
be visited. If an adjacent cell is found to be a future visited cell, all
its adjacent cells as well as their associated HPVSs are downloaded
asynchronously. The algorithm in charge of the motion prediction
uses a FIFO of viewpoints to store the navigation history. In our
implementation we limit the FIFO size to handle the two most re-
cent viewpoints. For motion prediction, we use a simple ray casting
algorithm that is performed only if the most recent viewpoints have
two different positions regardless of their viewing directions. In
addition, we maintain a list of adjacent cells that have not already
been selected. This list is reset whenever there is a change of the
current cell. The motion prediction algorithm works as follows. We
trace a ray having as origin the position of the less recent viewpoint
contained in the FIFO and passing through the position of the other
viewpoint of the FIFO. Then, this ray is checked for intersection
with each adjacent cell not already selected and all the intersected
cells are then selected as future visited cells.

6.2 Memory management

Because some sceneries can be too large to be entirely stored into
the client’s RAM, it is important for the browser to be able to free
some memory before performing some new downloading. Indeed,
because the client machine can benefit from different amounts of
RAM, ranging for example from 1GB for a recent workstation to
64MB for a PDA, the memory releasing has to be performed auto-
matically by the browser.

Before speaking about memory releasing in our extension, we
should have a look at what can be removed from memory. As we
said before, the shared object descriptions as well as the cell de-
scriptions can be written into a set of files. When a cell or an object
is requested, the file that contains its description is downloaded,
the scene graph that is described into the file is instantiated and
the requested node can be accessed by the browser through this
instance. Such a scene graph will be called shared scene graph.
Consequently, the part that can be removed from the client’s mem-
ory is the instance of a shared scene graph. In our implementation,
such an instance is assigned a reference counter that represents the
number of references to this instance that are performed through the
OPVS, the CPVS and the LPVS of the cells of the navigation space
that are already downloaded. Such an instance is removed from

memory only if its reference counter is equal to zero. Otherwise,
the reference counter is decremented and the instance is kept into
the RAM because it is still referred to by some cells. For now on,
this mechanism will be called sharedRemove. When an object is
selected to be sharedRemoved, the reference counter of the shared
scene graph, in which it is described, is decremented and the in-
stance of the shared scene graph is removed from memory only if
its reference counter is equal to zero.

In our implementation, the memory releasing mechanism is in-
voked when a memory allocation request fails. In this case, the re-
leasing mechanism is asked to free a given amount of memory. The
memory releasing is performed as follow. Starting from the cur-
rent cell, all the cells stored on the client side are sorted arrording
to their distance in the graph of adjacency. Then, the furthest cell
as well as all the shared objects and cells that are referred to in its
OPVS, its CPVS and its LPVS are selected to be sharedRemoved.
This operation is repeated until the amount of requested memory is
released or until the next furthest cell is one of the cells adjacent
to the current cell. In this last case, the client machine does not
have enough memory to visualize the database, the memory releas-
ing fails and the scenery cannot be visualized anymore. As we can
see, thanks to the adjacency relationship, the memory management
is guided by the scenery topology.

In the case the client machine has a local disk with some free
space at its disposal, the data can be swapped instead of completely
discarded. More precisely, when a shared scene graph is selected
to be removed, it is first swapped onto the hard drive before being
effectively removed from the RAM. Because the available space on
the hard drive is also limited, it is sometime necessary to remove
some files in order to swap a new one. Because parts of the ad-
jacency relationships are described into the file that are swapped,
it is not possible to use the topology-based replacement anymore.
Thus, in our extension, the file replacement system uses a classical
LRU policy. When a shared object or a cell is requested, the file
in which it is described is first searched into the disk cache. If the
file is not found, a downloading request is sent to the server. Other-
wise the local file is used to instantiate its shared scene graph and
is removed from the disk cache.

In our implementation, the memory management as well as the
use of disk swap can be set active, inactive or automatic through the
interface of the browser. In the automatic mode, the user lets the
browser choose the best solution according to the client machine
capacities.

Note that when using memory management together with
sceneries that contain locally dynamic objects, one should only
use dynamic geometry whose state is not important (for example
a door for which the author does not care if it is open or closed).
Indeed, if some locally dynamic objects are removed from memory
and downloaded again during the navigation, the state of the ob-
ject before being removed and after being downloaded again might
not be the same. In the case where the state is important, locally
dynamic objects should be handled as globally dynamic objects.
Another solution would be to keep these objects into the scenery,
to ensure that the client machine has enough memory to store the
whole scenery and to inactivate the memory management. This
should only be done for certain targeted applications because in
this case the database is not scalable anymore.

7 Results and future works

In this section we describe our two recent solutions that make an
intensive use of our extension. We explain the structure and the
mechanisms we used to represent the scenery for each solution and
we present some tests concerning the progressive transmission of
these sceneries across low bandwidth networks. At the moment
these solutions were published the extension was not completely

specified. Therefore some differences with the current specification
can be found in [Marvie et al. 2003b; Marvie and Bouatouch 2003;
Marvie et al. 2003a]. Nevertheless, we are now using the current
specification in both solutions and we are currently enhancing our
preprocessing algorithms in order to produce databases that make
use of the optimization mechanisms (see section 5) that have since
been implemented and validated.

7.1 Architectural sceneries

In [Marvie and Bouatouch 2003], we use the extension to visualize
remote architectural scenes that contain many high resolution tex-
ture maps. In this solution, we use a space subdivision technique
similar to Teller’s one [Teller and Séquin 1991] for the scenery pre-
processing. The result of the visibility pre-processing is then en-
coded using the cell-to-cell mechanism. Each cell is encoded into
one file and its local geometry is encoded in the same file and de-
scribed in the field 1pvs of the cell. During the course of the sub-
division the geometry that is lying in two cells is cut and the two
resulting parts are placed into their respective cells.

Figure 7: Top left: the Greek temple model (75000 polygons). Top
right: the museum model (17000 polygons). Bottom: the Kerlan
university (370000 polygons).

7.1.1 Progressive downloading

In order to analyze the downloading improvement induced by our
extension we have performed the pre-processing described above
on three different models : a museum model, a model of the univer-
sity of Kerlan and a model of a Greek temple (Figure 7). We then
performed a walk through each model. For the tests, we did not
use any texture maps. Nevertheless, one can notice that our exten-
sion implicitly prevents the browser from downloading the texture
maps that are not in the current PVS. Therefore, the texture map
files are progressively downloaded in the same way as the cells and
the geometry.

For each walkthrough we used a simulated bandwidth of
128Kb/s and a navigation speed of 3Km/h. During each walk-
through we compute, at each frame, the percentage of objects of
the current PVS that are already downloaded. This value is called
downloading quality. Table 1 sums up the following information
for each walkthrough when using or not pre-fetching: the theoret-
ical time required to download the original file (original time), the
downloading time for the first cell and its PVS (convergence time),
the minimum and average downloading qualities obtained during
the walkthrough after convergence.

Model Orig. | Conv. Pre- Min. Avg.
name time time | fetching | quality | quality

Museum 9s 14.0s | disabled 74% 98.6%
enabled 96% > 99.9%
disabled 36% 78.6%
enabled 72% 94.1%
disabled 38% 80.0%
enabled 61% 89.8%

Temple 57s 26.9s

Kerlan 5m30s | 45.5s

Table 1: Downloading quality study, for three indoor sceneries us-
ing or not pre-fetching.

As we can see in this table, the extension is not useful for the
transmission of the museum model. Indeed, this model is originally
very small and the cell from which the navigation starts presents a
very large PVS (nearly the full scenery). Therefore, the size of the
model is enlarged with the sets of PVS references, which increases
the convergence time. Note that if we have used texture maps, the
convergence time would have been lower than the original time be-
cause the downloading of some texture maps would have been de-
layed. With regard to the two other models, the extension allows
to start the navigation earlier than when using the original model.
Furthermore, when using pre-fetching, the progressive transmission
gives more than 89% of quality most of time. This value can easily
be raised if we do not transfer the vertex normals and if we use the
enhancements proposed in the following section. Indeed the two
scenes contain a lot of similar objects such as chairs and tables in
the Kerlan university or columns in the Greek temple.

7.1.2 Enhancement

In this solution, we did not use the shared inline mechanism to
make the cells share the objects instances (such as the tables and
the chairs). In order to enhance our existing solution, we are cur-
rently developing an automatic preprocessing step whose purpose
is to extract the static DEF/USE nodes from the original scenery.
Each extracted object is then described into a separate file and in-
stantiated into each generated cell that contains an instance of this
object in the original scenery. If the bounding box of the object
is completely contained in the convex hull of the cell, the object
is referred to using the shared inline mechanism described in sec-
tion 5.1. Otherwise, if the object is shared by two different cells it
is referred to using the shared transform mechanism described in
section 5.2.

In addition to this optimization, we are also currently modifying
our space subdivision algorithm so that the walls, the floors and the
ceilings be shared by the cells that describe the volume of a non-
convex room as explained in section 5.2.

7.2 Urban sceneries

In [Marvie et al. 2003b; Marvie et al. 2003a], we use the exten-
sion to visualize remote city models whose buildings are described
and transmitted using procedural models. In this solution, the nav-
igation space is restricted to the street network. Each street that is

placed between two crossroads is subdivided into three cells and
each crossroad is defined using a single cell. Each building, road
or pavement is described as an object and a cell-to-object visibility
relationship is established between these objects and each cell.

Figure 8: Bird eye view of the city model (1000000 polygons).

The model we used for the tests (Figure 8) is automatically gen-
erated using the city model generator described in [Marvie et al.
2003b]. In this report we emphasize the fact that in a city, many
buildings are similar in style and shape. Therefore we propose the
use of procedural models to describe each building. Each building
style is described in an external prototype using an L-system based
scripting language. Each building is then described into its associ-
ated VRML7 file by including the external prototype that encodes
its style and an instance of the building is created by assigning the
parameters, associated with this building, to the selected prototype.
For example, the parameters can be the footprint of the building,
its number of floors and the height of its adjacent buildings to cor-
rectly generate the party walls. With this method, we only need to
transmit a very low amount of data (300Bytes) to describe a com-
plex building. Furthermore, the visibility relationship that is used
allows the progressive transmission of these low cost building de-
scriptions. Finally, in order to accelerate the rendering process, the
geometry of each building is generated using LODs whose levels
are automatically selected according to the visual importance of the
building as well as to the client machine performances.

7.2.1 Progressive downloading

Similarly to section 7.1.1 we performed a walk through a 700m
square city model (Figure 8). The navigation speed was set to
15Km/h and the network bandwidth was limited to 56Kb/s. In this
model the texture maps were encoded using non compressed TGA
files. Thanks to the use of procedural models, the database size is
equal to 541.9KB in a compressed format instead of 1.09GB when
the geometry is completely reconstructed. During the walkthrough
we compute, at each frame, the percentage of objects of the current
PVS that are already downloaded and the percentage of objects of
the current PVS for which geometry is reconstructed. These values
are called downloading quality and rewriting quality. If both values
are equal to 100%, the transmission quality is perfect for the new
frame. Figure 9 shows how these values evolve over time for each
walkthrough, when using or not pre-fetching.

When looking at the downloading plot, we can observe higher
values at the beginning of the walkthrough because of the nine un-
compressed TGA texture maps used in our test scene. Nevertheless,
downloading is low thanks to our procedural models and our com-
pressed binary format. In addition, downloading is homogeneously
distributed over time owing to the spatial subdivision and visibility
computation results. Finally, the downloading and rewriting quality

T T T
Downloads - 60

T T T
Downloads - 60 120 -

120 |
- Rewrite qualit Rewrite qualit
& 100 ety — 50 100 ay - 50
o I [z
2 £
g 80 — 40 80 40 @
X

- =
[0} %)
2 60 - 30 60 43 §
z s
A 40 - 20 40 420 g
©
=
S 20 - 10 20 -1 10

0 1 L 1 L 0 0 A L 1 0

0 100 200 300 400 500 0 100 200 300 400 500

Time (seconds) Time (seconds)
Figure 9: Left: downloading over time (expressed in KB), down-
loading quality and rewriting quality for the city walkthrough, with-
out using pre-fetching. Right: same using pre-fetching.

plots show that pre-fetching allows to obtain a perfect transmission
quality (100%) most of the time.

7.2.2 Enhancement

In this solution we only used the cell-to-object visibility relation-
ship. Since our city models as well as the navigation space are
automatically generated, we are currently enhancing our genera-
tor in order to use the hybrid visibility relationship. With the new
generation process, the objects such as the street lamps will be en-
coded into their associated cells using the cell-to-cell mechanism.
Furthermore, since many objects placed in the streets are similar it
will be possible to use the shared inline and the shared transform
mechanisms to refer to these objects as explained in section 5. We
believe that we will soon be able to generate city models with a
huge number of objects into their streets to increase their visual re-
alism. Thanks to these mechanisms we will still be able to transmit
and visualize the models using low bandwidth networks and clients
with low performances. In addition, we intend to visualize these
models using wireless connected PDAS.

8 Conclusion

In this paper we have presented a simple and efficient VRML97
extension that allows the progressive transmission and the interac-
tive visualization of massive sceneries. Thanks to the three kinds of
visibility relationships that are proposed, it is possible to generate
databases for indoor and outdoor sceneries in a simple and compact
way. Thanks to the general representation of the cell it could also be
possible to merge indoor and outdoor sceneries in the same virtual
world.

The shared inline and the shared transform mechanisms we in-
troduced are new tools to share some objects located in separate
files. Thanks to these mechanisms the author can minimize the data
redundancy within the database and produce databases that are effi-
cient in terms of network transmission and client RAM occupation.

Finally we believe that the cell-to-cell visibility relationship can
also be used to speed up the rendering of globally dynamic objects.
Indeed, if globally dynamic objects remain within the navigation
space, it is possible to check if such objects lie in some of the cells
that make up the current CPVS. Thus, if the object is in one of
these cells, it needs to be rendered otherwise it is not visible. We
are currently making some experiments with this case and we are
looking for a solution to track the globally dynamic object in an
efficient way. In our opinion, thanks to this optimization we will
soon be able to visualize virtual worlds populated with a very large
number of animated humanoids and vehicles.

References

AIREY, J. M., ROHLF, J. H., AND BROOK, F. P. 1990. Toward image
realism with interactive update rates in complex virtual building envi-
ronements. In Symposium on interactive 3D graphics, 41-50.

CAREY, R., AND BELL, G. 1997. The Annotated VRML 2.0 Reference
Manual. Addison-Wesley Developers Press.

COHEN-OR, D., AND ZADICARIO, E. 1998. Visibility streaming for
network-based walkthroughs. In Graphics Interface, 1-7.

COHEN-OR, D., FiBISH, G., HALPERIN, D., AND ZADICHARIO, E.
1998. Conservative visibility and strong occlusion for viewspace par-
titioning of densely occluded scenes. In Computer Graphics Forum,
vol. 17(3), 243-253.

COHEN-OR, D., CHRYSATHOU, Y., SILVA, C. T., AND DURAND, F.
2002. A survey of visibility for walkthrough applications. TVCD.

DURAND, F., DRETTAKIS, G., THOLLOT, J., AND PUECH, C. July 2000.
Conservative visibility preprocessing using extended projections. Pro-
ceedings of SGGRAPH 2000. Held in New Orleans, Louisiana.

FUNKHOUSER, T. 1996. Database management for interactive display of
large architectural models. In Proceedings of Graphics Interface, 1-8.

GRAHN, H., 2000. Cells and Portal in VRML a proposal. Blaxxun interac-
tive.

HAUMONT, D., DEBEIR, O., AND SILLON, F. 2003. Volumetric cell-and-
portal generation. In Eurographics.

H.FucCHSs, Z.KEDEM, AND NAYLOR, B. 1980. On visible surface genera-
tion by a priory tree structures. In Computer Graphics, 14(3):124-133.

KOLTUN, V., CHRYSANTHOU, Y., AND COHEN-OR, D. 2001. Virtual
occluders : an efficient intermediate pvs representation. In Rendering
Techniques 2000 : 12th Eurographics Workshop on Rendering.

LERNER, A., CHRYSANTHOU, Y., AND COHEN-OR, D. 2003. Breaking
the walls: Scene partitioning and portal creation. In Pacific Graphics.

MARVIE, J.-E., AND BouATOUCH, K. 2003. Remote rendering of mas-
sively textured 3D scenes through progressive texture maps. In The 3rd
IASTED conference on Msualisation, Imaging and Image Processing,
ACTA Press, vol. 2, 756-761.

MARVIE, J.-E., PERRET, J., AND BOUATOUCH, K. 2003. Remote inter-
active walkthrough of city models. In proceedings of Pacific Graphics,
IEEE Computer Society, vol. 2, 389-393. Short Paper.

MARVIE, J.-E., PERRET, J., AND BOUATOUCH, K. 2003.
Remote interactive walkthrough of city models using pro-
cedural geometry. Tech. Rep. PI-1546, IRISA, July.

http://www.irisa.fr/bibli/publi/pi/2003/1546/1546.html.

MENEVEAUX, D., MAISEL, E., AND BOUATOUCH, K. 1997. A new par-
titioning method for architectural environments. Journal of Visualization
and Computer Animation (May).

SCHAUFLER, G., DORSEY, J., DECORET, X., AND SILLION, F. X. 2000.
Conservative volumetric visibility with occluder fusion. In Sggraph
2000, Computer Graphics Proceedings, ACM Press / ACM SIGGRAPH
/ Addison Wesley Longman, K. Akeley, Ed., Annual Conference Series,
229-238.

TELLER, S., AND SEQUIN, C. H. 1991. Visibility preprocessing for inter-
active walkthroughs. In Computer Graphics (Proceedings of S GGRAPH
91), 61-69.

TELLER, S. 1992. \Misibility Computations in Densely Occluded Environ-
ments. PhD thesis, University of California, Berkeley.

WEB3D. 2002. Extensible 3d (X3d). Specification, Web 3D Consortium,
http://www.web3d.org/fs_specifications.html.

WONKA, P., WIMMER, M., AND SCHMALSTIEG, D. 2000. Visibility
preprocessing with occluder fusion for urban walkthroughs. In Euro-
graphics Workshop on Rendering, 71-82.

