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Figure 1: Production pipeline of stroke-based buildings. The edges of facade images are extracted and vectorized. This vector data is used
instead of textures to represent the facade in the final 3D model.

Abstract

In this paper, we present a new approach for remote visualization
of large 3D cities. Our approach is based on expressive rendering
(also known as Non-Photorealistic Rendering), and more precisely,
on feature lines. By focusing on characteristic features, this solu-
tion brings a more legible visualization and reduces the amount of
data transmitted on the network. We also introduce a client-server
system for remote rendering, as well as the involved pre-processing
stage that is required for optimization. Based on the presented sys-
tem, we perform a study on the usability of such an approach in the
context of mobile devices.

CR Categories: I.3.2 [Computer Graphics]: Graphics Systems—
Distributed/network graphics; C.2.4 [Computer-Communication
Networks]: Distributed Systems—Client/server; I.4.6 [Image Pro-
cessing and Computer Vision]: Segmentation—Edge and feature
detection.

Keywords: Non-photorealistic rendering, line-based rendering,
mobile and connected devices, client-server architecture, streaming

1 Introduction

The aim of the majority of previous work in remote visualization
is concerned with improving realistic rendering using complex 3D
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models, complex lighting systems, progressive texture transmis-
sion, and so on. The resulting choices are visible in the definition
of X3D1 and VRML22 format. However, full realism will always
be very resource-demanding, due to the natural complexity of real
world.

On the other hand, for a number of applications, such as trip or
assisted navigation, the solutions still mostly rely on pure 2D in-
formation like maps3. These can even be available on cell phones
or PDA’s, and, more generally, on mobile devices. Combined with
GPS, they can assist the user during a trip.

We believe that there is a middle ground for remote visualization of
3D content such as complex urban environments, navigation, illus-
tration and education such as for Cultural Heritage. In this paper,
we propose a new approach for such a context with a special focus
on cities.

In our remote visualization context, the server disposes of the entire
geometry and sends a subset of the model to the client on demand.
Usually, the buildings of a virtual city are simple textured blocks,
which are constructed from extrusions of their footprints. The tex-
tures are photographs of real building facades. With high quality
photographs, the visual quality of the resulting cities is satisfactory.
However, the transmission of high-resolution textures can be pro-
hibitive due to the network bandwidth. Furthermore, overly detailed
textures can hide the important features that are be transmitted. The
content has to be adapted to what the user can perceive, and, in the
context of mobile devices, it has to be adapted to the reduced size
of the display of mobile devices.

Thus, we base our approach on expressive or non-photorealistic
rendering (NPR), and more precisely, on Feature Lines (e.g., for
3D models [DeCarlo et al. 2003]). By focusing on characteristic
features of the content, feature lines can create more legible images
than realistic rendering: focusing on the content to be displayed,
frees the screen from visual data that is not required. The 3D con-

1http://www.web3d.org/x3d/
2http://www.web3d.org/x3d/specifications/vrml/
3http://www.mappy.com, http://mappoint.msn.com
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Ttent can be augmented with information, such as text (for example,
for a city walk-through, streets with their name and their direction).
Also, since only the features are displayed, this approach can re-
duce the amount of data that has to be transferred in a client-server
architecture. By storing the feature lines in a vectorial form, the
size of a building representation can decrease significantly.

In this paper, we present a pipeline that is able to extract the fea-
ture lines from photographs of building facades, to transmit and to
render them as full 3D models on remote clients. This pipeline has
been implemented in a prototype system that allows us to perform
an experimental study on the usability of such an approach, in terms
of rendering performance, data organization and transmission, and
required network bandwidth.

2 Previous work

Our application is specific to navigation in large virtual cities in a
client-server configuration. We state that the use of feature lines
for the rendering will improve performances. Most of our work
relies on feature line extraction and vectorization, and on the level
of detail for the extracted lines. In this section, we present some of
the existing previous work.

2.1 NPR for remote rendering

Our use of NPR for remote rendering is motivated by the fact that
the transmitted data can be smaller than its photorealistic equiva-
lent. In the case of small displays, the abstraction offered by NPR
is also invoked for more efficient visualization [Hekmatzada et al.
2002; Diepstraten et al. 2004].

We are closely related to these solution since we are transmitting
feature lines from remote rendering. However, in Hekmatzada et
al. [2002] and Diepstraten et al. [2004], the lines are extracted on
the server side and are essentially silhouettes; those lines are view-
dependent. The consequence is a strong dependence between the
client and the server because new data must be sent for each new
viewpoint. In the context of virtual cities, the features lines, which
are related to facades, are view-independent. Indeed, the potential
visible lines that are transmitted are valid for a large range of view-
points. There is, therefore, less communication between the server
and the client. Moreover, because the data we transmit is vectorial,
we can perform progressive transmission based on levels of details.
In [Hekmatzada et al. 2002], they also render a town using sharp
edges of the geometric model. In that instance, the details of the
facade (windows, doors, materials) were not represented.

2.2 Feature extraction and vectorization

Most of the techniques for edge detection are based on a convolu-
tion kernel in order to locally estimate the gradient magnitude. The
gradient represents the intensity variation within the image, which
conveys the characteristic features. Following this convolution, the
contours are recovered by applying a threshold. These filters work
well for general purpose, but nevertheless, they are very sensitive
to noise. Moreover, resulting contours are usually regions of con-
tours, that is, their width is larger than one pixel. This is generally
a problem for an approximation with poly-lines. The most pop-
ular edge detectors are Sobel [Pingle 1969], Roberts [1965] and
Prewitt [1970]. Each detector uses a slightly different convolution-
kernel. The Canny edge detector [1986] detects one pixel width
contours; our solution is based on it.

Once the edges are detected, they have to be approximated by
curves or poly-lines for the final vectorization. As stated in [Tombre
et al. 2000], many algorithms have been developed and provide
case-specific solutions. This vectorization is generally done in two
steps. First, the pixels are chained. This process is not well de-
tailed in existing publications (see the extensive survey in [Tombre
et al. 2000]), except for the work of Chakrabarti et al. [2000]. But
this algorithm requires too many iterations. The second step is the
polygonal approximation. All the different solutions can be clas-
sified into three categories: (i) minimization of the distance be-
tween the approximation and the curve (e.g., [D. H. Douglas 1973;
de Figueiredo 1995]); (ii) minimization of the area between the ap-
proximation and the curve (e.g., [Wall and Danielsson 1984]); and
(iii) best approximation of the angular (e.g., [Dunham 1986]) or the
curvature (e.g., [Asada and Brady 1986]) variation. Each approach
provides a different solution but gives similar results for the quality.

2.3 Level of detail for line-based rendering

Once the feature lines have been extracted, they have to be rendered
efficiently. With the development of NPR rendering, some solutions
have been proposed for the simplification of the line-based style. In
Deussen et al. [2000], the presented model is very specific to the
underlying structure for trees and vegetation, and cannot simply be
used in our context. Praun et al. [2001] present an image-based
method to handle LOD in hatching. Even if their approach allows
real-time display of hatching styles, their tonal art maps are only
mip-mapped textures, and will not work for vectorial data. In the
“WYSIWYG NPR” system [Kalnins et al. 2002], and for generic
hatching in general, the user specifies the appearance of the object
for several viewpoints, and relevant LODs are then blended for a
given view. There is no automatic process for lines.

For a set of co-planar feature lines, image-space simplification of
lines can be adapted in order to obtain the different LODs. A first
approach consists in a perceptual grouping of lines. Most of the
work in this area deals with the extraction of closed paths in draw-
ings [Saund 2003; Elder and Zucker 1996], focusing on grouping
criteria such as good continuation and closure. However, other cri-
teria are more relevant for simplification purposes, e.g. proximity
and parallelism. Unfortunately, even if each criterion has been stud-
ied in isolation [Rosin 1998], their relative influence has yet to be
determined. In Barla et al. [2005], the authors extend the previous
work in order to create a real line-set simplification based on a per-
ceptual metric. Unfortunately, all these solutions create new lines
for each LOD and thus increase the needed bandwidth for the data
transmission.

Another approach is to remove, for each LOD, the “non-significant”
lines (e.g., [Preim and Strothotte 1995; Wilson and Ma 2004]).The
work of Preim et al. [1995] is most closely related to our research.
Our approach is inspired by the metric they suggest, using line
length for the selection (see Section 5.2).

3 Architecture

3.1 Overview

Figure 2 presents the general overview of the system. The first part
consists in the modeling and optimization of the 3D model. We
first extrude the buildings from the city footprints. This results in a
set of buildings with textures corresponding to their facade. Then,
feature lines are extracted from the textures and used to represent
the facades more legibly (see Section 4).
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Figure 2: General overview. The offline processes consist of model-
ing and preparing the database to be used in a client-server applica-
tion (online). First, the feature lines are extracted from the textures.
Then, the geometry is split up and the visibility relationships are
computed.

The next part consists of optimizing the database for the streaming.
The database needs first to be split up into connected cells, so that
the server is able to send to the client only the required cells. For
further optimization, visibility relationships between the cells are
computed. As a result, only the visible geometry is sent to the client
and rendered. The related processes are described in Section 3.2
and Section 3.3.

Finally, the remote-rendering solutions for client-server applica-
tions are explained in Section 5, and the results of our approach
are discussed in Section 6.

3.2 Scene subdivision

The objective of this preprocessing step is to produce a 3D database
that can be streamed using the visibility information. A large num-
ber of solutions have been developed (see the extensive survey
in [Cohen-Or et al. 2003]). We based our solution on VRML97
and on the extension for visibility streaming defined by Marvie et
al. in [2004]. We describe briefly some aspects of this approach.

The preprocessing can be decomposed into two steps: First, the
navigation space is produced by subdividing the city model accord-
ing to its topology. Second, the PVOS (Potentially Visible Object
Set) is computed for each cell of the navigation space.

In order to generate the navigation space for a city (a 2.5D
dataset), we exploit the BSP subdivision similar to the one pre-
sented in [Meneveaux et al. 1998]. The city is subdivided into a set
of cells (each cell containing its associated geometry) for which it
establishes adjacency relationships. The resulting cells are used to
compute cell-to-objects visibility relationships [Wonka et al. 2000;
Cohen-Or et al. 2003]. Each cell will then refer to a set of poten-
tially visible objects (PVOS) that are the buildings of the city. Note
that the navigation space can be restricted to the streets by using the
approach described by Décoret and Sillion [2002].

For the generation of such a database and the optimization of the
preprocessing step, we rely on three different representations of the
city model:

1. The polygonal model of the entire city, in order to compute
the navigation space.

2. The simplified model of the buildings (only their polygonal
faces), in order to perform the visibility computation.

3. The full model of the buildings (their polygonal faces together
with their vectorial appearance), for the final rendering.

3.3 Visibility streaming

The process is done online on the client side. There are two stages
which are processed in a sequential way: one loading step, neces-
sary for the navigation, and then, a pre-fetching step to optimize
data transfers. During this first step, the current cell is downloaded
in a synchronous way together with its PVOS. The user can now
begin the navigation.

During the navigation, a prediction is made about the next cell to be
visited, based on the users’s motion. This future visited cell and its
adjacent cells are downloaded in an asynchronous way with their
PVOS. The future visited cell has a higher priority.

3.4 Adaptive memory management

While the user is walking through the scene, the new cells are
streamed progressively. These cells are stored in memory, so down-
loading them a second time will not be required when the user
comes back. The client builds up a graph using the adjacency re-
lationships of the cells available on its side. When the client needs
a new cell but runs out of memory, the farthest cells from the cur-
rent cell (i.e., the deepest in the graph) are removed until enough
memory is freed.

4 Feature extraction of the facades

The whole image-processing pipeline is shown in Figure 1. Feature
lines are extracted from the facade pictures using an edge detector.
Then, the resulting contours are vectorized into poly-lines. This
procedure allows the size of the data to be reduced as well as to
make the representation independent from the resolution. These
two steps are presented in this section.

4.1 Edge detection

Among the tested edge detector we tested [Pingle 1969; Roberts
1965; Prewitt 1970; Canny 1986], we identified the Canny edge
detector [Canny 1986] to be best suited for our purposes. It works
in a multi-stage process that we recall here shortly. First of all, the
image is smoothed by Gaussian convolution. Then, the gradient is
computed on the image, using the following convolution kernels.

Gx =
1
2

[

−1 −1
+1 +1

]

Gy =
1
2

[

+1 −1
+1 −1

]

.

This highlights high frequencies, which often represent contours.
The resulting gradient magnitude and direction are

|Gi, j | =
√

Gx(i, j)2 +Gy(i, j)2 (1)

θi, j = arctan
(

Gy(i, j)/Gx(i, j)
)

. (2)

Then, a pixel value is kept only if it represents a local maximum in
the gradient direction. This ensures that one pixel wide contours are
obtained, which is a desirable quality for feature lines extraction.

The resulting magnitude image is filtered by removing values that
are outside a minimum and a maximum threshold. This ensures that
the same edge will not be broken by noise.

The parameters involved with this calculation are the size of the
Gaussian kernel, its standard deviation, and the two thresholds.
These values can be set once and applied to a complete set of data.
This provides coherent results. An example can be seen in Figure 1.
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(a) End points
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(b) Junctions

Figure 3: Sample masks used to find initial nodes of the graph: (a)
for end-point detection, (b) for detection of junctions

4.2 Pixel chaining

For the vectorization process, the pixels obtained from the edge
detection are chained to obtain the poly-lines. To this end, we create
and fill a graph structure.

First, we identify end-points and junctions of the pixel chains using
3×3 masks, like those depicted in Figure 3 on the contour image.
The detected pixels are the initial nodes of the graph, the edges are
the pixel chain that links two nodes.

Starting from an end-point, we process the connected components
following the contour. For remaining components without end-
points (e.g., the loops, like the windows of Figure 4), a second
traversal of the image is necessary. This time, the starting pixel
is the first unprocessed one. Figure 4 illustrates the different stages
of this procedure.

The identified junctions are not always positioned on the actual
intersections between the segments, due to the fact that we only
search for one-pixel neighborhood. Figure 5 illustrates this prob-
lem. Figure 5(a) shows the detected junctions using the mask
method. The real position of the intersection (Figure 5(b)) can only
be obtained by knowing a vector representation of the involved seg-
ments. We obtain it easily after the polygonal approximation in the
post-processing stage by merging locally close junctions.

Thus, each pixel chain of the graph is processed to obtain a polyg-
onal approximation [Wall and Danielsson 1984] (some segments
defined by two vertices). The vertices are then added as nodes in
the graph structure (see Figure 4-(e)).

4.3 Post-processing and cleaning

In order to optimize vectorization and to preserve the general struc-
ture of a facade, a post treatment is necessary. Its purpose is to
simplify the obtained approximation and to correct the errors due
to the initial noise and the possible lens deformation of the image,
and the errors due to the vectorization stage.

(a) (b) (c) (d) (e)

Figure 4: Stages for automatic stroke extraction: (a) Extracted
edges. (b) End-points and junctions detection. (c) Breadth-first
traversal. (d) Loop processing. (e) Polygonal approximation (intro-
duced characteristic points are white).
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Figure 5: Problem when positioning junctions: (a) Detected junc-
tions. (b) More likely position.

The post-processing steps that we selected are the followings:

• Suppression of small size segments: these are introduced by
noise and do not bring anything to the legibility of the image.

• Junctions merging: as explained in Section 4.2, the masks
method does not allow us to find the right position of the inter-
sections between the segments. The vectorial representation
enables us to merge locally close junctions.

• Straight line detection: since the input images suffer from
lens distortions and noise, the detected lines are not always
perfectly straight. Indeed, the polygonal approximation of a
chain perceived as a single line can result in several small con-
nected segments that have similar orientations. To limit the
number of segments and to improve the legibility, we merge
connected segments that have similar orientation.

• Vertical and horizontal line fitting: As we work on buildings,
we have a great number of horizontal and vertical lines. When
a line is close to vertical or horizontal, we simply straighten
it.

5 Rendering of Lines

We now have a set of lines for each facade. An easy way to get a
3D model from this data is to build a street in which each building
is a simple bloc. For each facade, we store the extracted lines.

5.1 Rendering the full set of lines

We can use the set of lines to render a facade in different ways:

1. The lines can be drawn in an image to be used instead of a
texture. This image is indeed less complex than the original
and thus offers a good compression rate using any image com-
pression algorithm. We can consider this an easy way to try
different stylization techniques, but the quality is restricted by
the texture resolution.

2. A line can be represented as a geometric primitive on the sur-
face of the building (a GLLINE in our implementation). The
projected lines have a constant width of 1 pixel. With this vec-
torial representation, the visualization can be adapted to any
resolution.

Because it is adequate for multi-resolution, we have chosen the sec-
ond method. Figure 6 shows an example of the rendering of a street
using lines on Pocket PC. Rendering all lines without taking into
account facade distance and orientation results in a high density of
lines in image space that reduces legibility. This leads us to use
level of detail techniques in order to solve this issue.
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(a) Without level of detail (b) Using level of detail

Figure 6: A street rendered on a Pocket PC. (a) The display is
quickly saturated with lines. (b) Using level of detail permits us
to reduce line density.

5.2 Level of detail

The lines previously extracted are rendered as constant width lines
on the 3D model no matter the distance they are viewed from. In
some instances, the screen may become saturated with lines when
viewed at distance. This will decrease the legibility of the image.
LOD provides a solution to this problem. We present here our ap-
proach based on the VRM97 standard.

Depending on the distance a building is viewed at, we only show a
subset of the associated lines. The farther we are from a building,
the smaller the subset will be. In this way, we preserve a reasonable
line density on the screen. Moreover, less geometric primitives are
drawn, thereby improving the rendering time.

In order to create the LODs, we have to define a criterion for line
selection. In our approach, we use the length of the lines. The
fully detailed level contains the whole set of lines; this level is used
for close and orthogonal view of the facade. Thus, for each level
of detail, we define the range of valid line lengths. This results in
removing the smallest lines between two successive LODs. This
technique provides visual continuity during the transition between
two levels of detail.

This approach is global to a facade and does not consider the close-
ness between the lines, which can lead to unwanted local agglom-
erations of lines. We are exploring a solution that selects lines for a
given level of details depending on line density in the image [Barla
et al. 2005]. Nevertheless, our first approach is well adapted to the
current rendering system, providing us with meaningful LOD, and
giving better rendering performances (see next section) than the full
line rendering.

6 Results

Since the approach that we have presented can be considered mostly
as an alternative to textured rendering applied to urban scenery, we
need to compare both methods. The validation of scene legibility
depends on psychological matters and is not the purpose of the cur-
rent paper. We rely on the fact that we can still recognize a facade
with only the extracted lines (see Figure 6 and Figure 1). We com-
pared line and texture-based rendering on the following points: data
size and rendering performance.

For these tests, we used a DELL Axim X50V in order to show the
performance of the presented approach on mobile devices. It has a
624 MHz ARM processor, 64 MB of RAM memory and an Intel
2700G GPU. It supports full hardware acceleration of OpenGL-ES
and handles a resolution up to 640x480. The application is tested
with two OpenGL-ES implementations: the Intel SDK for complete
hardware acceleration and a software-based library developed by
Hybrid Graphics4.

For the relevance of the tests, all the data in each set has to be coher-
ent, that is the images of facades must come from the same source
(same model, same street, same acquisition device...). This allows
us to use the same parameters for the vectorization of a complete
set of input images, with comparable results. Obviously, it will not
look homogeneous when mixing high and low resolution images or
images from different cities.

All of the pictures of building facade come from two different
sources. The first one is the website of the French “yellow pages5”
which offers images of facades for several towns. It is possible to
easily obtain images from the same street. However, they are of
very small resolution (250x320) and poor quality: the imperfec-
tions of JPEG compression are often visible. In order to confront
the results to data of better quality, we have taken photographs of
facades using a digital camera. The resulting pictures have a res-
olution of 3008x2000. From these input data we generated three
streets using:

1. 10 images of the Borda street in Bordeaux coming from the
online yellow pages.

2. 22 images of the Viadieu street in Toulouse coming from the
online yellow pages.

3. 13 photographs of the “cours de la Libération” at Talence
taken with our digital camera.

We used the city model described by Hachet and Guitton [2001]
with our sets of texture. These textures are also processed in order
to extract the characteristic lines.

6.1 Fixed viewpoint

In this section, we study the general behavior of our approach when
no streaming is requested from the server. This represents the opti-
mal case.

6.1.1 Data size

Comparison with the JPEG compression As an alternative
to textured rendering, we have to compare the size of the generated
lines with the size of the original JPEG-compressed images. The
results are summarized in Figure 7. The vector data is stored in a
simple binary format. It contains a header of two integers which
are the width and height of the original image. Then, each line is
described by four float values: the coordinate of the two end-points
of the line. The resulting file is compressed using the zlib6.

The vector files resulting from the low resolution images (Fig-
ure 7(a) and Figure 7(b)) are on average two times smaller than
the JPEG images: 4.16 KB in average for the vector data com-
pared to 8.55 KB for the JPEG compression. We obtain smaller
data sizes with our method. Of course, the files contain far less in-
formation than compressed images ; the representation is indepen-
dent of the resolution, and it contains only the legible characteristic

4http://www.hybrid.fi
5http://www.pagesjaunes.fr
6http://www.zlib.net/



P
R

E
-P

R
IN

T

 0

 2

 4

 6

 8

 10

 12

 14
S

iz
e 

in
 K

B

Facade

JPEG image
Vector data

(a) Borda street (10 images)

 0

 2

 4

 6

 8

 10

 12

 14

S
iz

e 
in

 K
B

Facade

JPEG image
Vector data

(b) Viadieu street (22 images)

 0

 100

 200

 300

 400

 500

 600

S
iz

e 
in

 K
B

Facade

JPEG image
Vector data
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Figure 7: Comparison between the size of vector data and JPEG images

features. Conversely, an image depends strongly on its resolution.
Thus, for high-resolution images, the ratio JPEG/vector is bigger
than 10 (387.76 KB in average for JPEG compression compared to
37.55 KB for vector data).

Comparison with drawn textures The lines can be drawn into
an image to be used as a texture. The resulting images are less
complex than original ones, so they offer a good compression ratio
using any image compression algorithm. Such a representation is
interesting because we can foresee using this approach to easily try
several stylization methods. The Figure 8 presents a comparison
between the sizes of files compressed using JPEG and the sizes of
the images in which we drawn the vector data. The PNG format
has been adopted instead of JPEG for this purpose because, even if
the JPEG method handles the compression of images that contain
big color patches, as ours do, strong artefacts can be introduced
along the sharp edges. Indeed, the images we produced have a white
background on which the lines are drawn in black. For the PNG
compression, we used the adaptive filter as recommended in the
PNG specification published by the W3C7.

The resulting data size for PNG without anti-aliasing are fairly low,
3.13 kb on average for the low-resolution images (Figure 8(a) and
Figure 8(b)) and 60.56 kb for the high-resolution ones (Figure 8(c)).
Therefore, it is conceivable to use them as textures. When an anti-
aliasing is applied to the drawn lines, the color map grows as well
as the size of the images. In high resolutions, the resulting images
are still smaller than the JPEG ones, 260.85 kb for PNG compared
to 387.76 kb for JPEG on average. This is not the case for the low-
resolution images because of their poor quality.

6.1.2 Rendering speed

The rendering tests presented in Table 1 have been done on the three
data sets using textures, lines without LOD and lines with LOD on
the Pocket PC.

Textured rendering is faster than line-based rendering on the
software-based OpenGL-ES implementation. This is not surpris-
ing due to the large number of geometric primitives used to render
the scene. The frame rate increases when using LOD and is higher
than textured rendering. For the high-resolution images, their use
as textures is not practicable on Pocket PC, whereas when using
lines with LOD the result is still interactive.

7www.w3.org

Using the GPU, the performance is better when using the textures
or the lines with LOD. In this case, the texture based rendering
leads to better results than the line-based rendering. Surprisingly,
rendering the full set of lines on the software-based implementation
is faster than using the dedicated hardware.

6.2 Moving viewpoint: the complete city model

In this section, we study the general behavior of our approach when
streaming is requested from the server. This represents the real
client-server case.

(a) Using original images (b) Line-based rendering

Figure 9: Same view of a street. (a) Using the original images as
textures (b) Using line-based rendering.

6.2.1 Data size

In order to test the different methods, we recorded a path in the
scene and used it for the different models: buildings with their orig-
inal textures (photographs) and buildings along with their line de-
scriptions. We used two versions of the later model: one which
contains the whole set of lines for each building and one which
takes advantage of the LOD technique described previously. As a
reference for the highest possible performance, we used a model
containing the buildings only. During the navigation, we recorded
different statistics. Considering the size of downloaded files, we
have measured 7.55 KB on average for the lines, and 35.61 KB for
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(c) Cours de la Lib́eration (13 images)

Figure 8: Comparison between JPEG images and vector data drawn into PNG images, optionally using anti-aliased lines

Borda street Viadieu street Cours de la Lib́eration
Number of lines 11188 6190 58949
Number of lines per facade 508.55 619 4534.54

Performance using the software-based implementation
Textured rendering 5.7 fps 5.6 fps -
Rendering using lines 4.6 fps 3.8 fps 1.3 fps
Rendering using lines and LOD 7.2 fps 7.2 fps 3.1 fps

Performance with hardware acceleration
Textured rendering 51.0 fps 28.2 fps -
Rendering using lines 4.7 fps 2.8 fps 0.7 fps
Rendering using lines and LOD 15.8 fps 18.8 fps 2.0 fps

Table 1: Frame-rate comparison on the Pocket PC

(a) Performance using the software-based implementation

Buildings + Lines + Lines with LOD + Textures
Memory used (MB) 23.50 25.19 26.25 26.95
Frame rate (fps) 2.88 1.17 2.28 2.18
Graph scene traversal (ms) 6.77 47.43 65.32 13.96
Rendering time (ms) 286.39 930.04 346.54 387.74
Average bitrate (bps) 23980 27292 25220 31696
Min bitrate (bps) 2448 1577 1573 1573
Max bitrate (bps) 87000 548535 319640 319640

(b) Performance with hardware acceleration

Buildings + Lines + Lines with LOD + Textures
Memory used (MB) 20.92 23.65 24.41 26.28
Frame rate (fps) 22.31 1.25 5.45 11.97
Graph scene traversal (ms) 5.98 47.09 57.92 9.83
Rendering time (ms) 27.84 1631.25 257.88 90.15
Average bitrate (bps) 19723 19125 17306 26902
Min bitrate (bps) 9757 3629 2715 8583
Max bitrate (bps) 92200 448454 297178 1168214

Table 2: Rendering performance on the Pocket PC
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Tthe textures (see Table 2). As for previous tests on the street model,
the lines are much smaller than the textures. This can also be seen
on the required memory. Using textures results fills the memory
about 2 MB more than the lines.

6.2.2 Rendering speed

Considering the rendering speed using each technique, once again,
the geometry shows the highest frame rate we are able to reach.
Using the lines without LOD results in a frame rate of 1.17 fps in
the software-based implementation, and 1.25 fps in the other case
(see Table 1). The rendering using the textures leads to good re-
sults (2.18 fps and 11.97 fps) and is still higher than using the lines
with LOD (2.28 fps and 5.45 fps). This can be explained by con-
sidering the very poor quality of original textures. Additionally, the
line node could be more optimized. Indeed, we are currently using
non-connected lines: each line is described by two end points. Be-
cause of the original graph structure, some end-points are common
to different lines. Therefore, the rendering cost could be reduced
by using line strips (GLLINE STRIP).

The rendering is divided in two stages, the scene graph traversal and
the rendering time. As seen in Table 2, the scene graph traversal
time for the texture (13.96 ms and 9.83 ms) is lower than for the
lines with LOD (65.32 ms and 57.92 ms). Indeed, the scene graph
for the textures is simpler.

However, the rendering times are very close using the software im-
plementation: 387.74 ms for the textures, and 346.54 ms for the
lines with LOD. By implementing an optimized dedicated node,
we would decrease the time spent in the graph traversal and con-
sequently we would increase the frame rate significantly. Using
hardware acceleration, the textures obtain better results (90.15 ms)
than the lines with LOD (257.88 ms).

6.2.3 Network

For each method, we measured the bitrate in the following way.
Each time a file is requested by the client, we compute the time
interval between the beginning of the download and the node ini-
tialization. By dividing the file size by this value, we obtain a re-
sult that represents the rate at which the data are arriving from the
server to the moment they are available in the scene graph of the
client, ready to be rendered. It includes: data transmission over the
network, data decompression, VRML97 parsing and node initial-
ization. The OpenGL-ES library uses 16 bits integers as index for
vertex arrays. The VRML97 standard uses 32 bits indexes. As a
choice of implementation, we decided to let the client adapt him-
self to the data. So, there is a conversion from 32 to 16 bits on the
fly on the client side. As seen in Table 2, the texture node requires
less time be spent in parsing VRML and in converting integers and
so it makes its bitrate higher than for the lines. Even if there is less
data to be transmitted, the time spent in all these processes makes
the bitrate smaller for the lines. Once again, making a dedicated
node would improve the results.

On our tests, the maximum bitrate we reach is about 1.1 Mb/s.
Since the actual network bitrate used is lower than this value. We
should be able to navigate through the city even with a low network
bandwidth.

7 Conclusion

In this paper, we have presented a new approach for remote render-
ing of large 3D content (like cities), based on expressive rendering.
In this approach, the original textures of the facade are processed
and the feature lines are extracted. The resulting data set (buildings
with their characteristic lines) is optimized for remote visualization
and stored on the server side. The city is then streamed on-demand
on a remote client.

We have experimented with this approach on mobile clients like
PDA. In our experiments, we can still recognize buildings, showing
that the resulting rendering still conveys the required information.
This is useful for 3D content display on small devices. It shows also
that the amount of data to transmit is greatly reduced, making this
solution well suited for limited-bandwidth networks like the ones
used by mobile devices. Moreover, it shows that we can still obtain
interactive rendering, even with pure software 3D rendering.

Future Work

First, we have to improve the robustness and the efficiency of our
extraction of the feature lines. This would increase the legibility
of the resulting visualization. Based on this improved solution, a
cognitive study has to be performed.

Then, our results have shown that using the lines as 3D primitives
requires of the scene graph which is too costly. A specific node for
the vectorial description of an object’s appearance would greatly
decrease this drawback. This new node would take advantage of
the up-coming vectorial processor based on the OpenVG8 standard
by the way of vectorial textures, and would allow the integration of
a larger range of NPR styles. We are also working on specific LOD
solutions for such a node.
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