
Adaptive Real-Time Rendering of Planetary Terrains

Raphaël Lerbour Jean-Eudes Marvie
{raphael.lerbour, jean-eudes.marvie, pascal.gautron}@thomson.net

Thomson Corporate Research
1, avenue de Belle Fontaine, CS 17616

65576 Cesson-Sevigne, France

Pascal Gautron

ABSTRACT
As virtual worlds applications get more and more demanding in terms of world complexity and rendering qual-
ity, rendering virtual terrains and planets in real-time introduces many challenges. In this paper, we provide a
full-featured solution for rendering of arbitrary large terrain datasets in the context of client-server streaming.
Our solution automatically adapts to arbitrary network bandwidths and client capabilities, ranging from high-end
computers to mobile devices. We address the problem of rendering highly complex terrain databases comprising
several hundred gigabytes of data, which therefore cannot be entirely loaded in memory nor rendered in real-time.
The contributions of this paper solve important issues for high quality terrain rendering: adaptive texture mapping,
inexpensive removal of geometry cracks and support of planetary terrains.

Keywords: Planetary terrain, adaptive rendering, adaptive streaming, generic data structure, level of detail.

1 INTRODUCTION
Virtual 3D worlds become more and more omnipresent
in many applications, ranging from video games to cin-
ema and virtual training. As time gets by, the vir-
tual worlds applications get more and more demand-
ing in terms of world complexity and rendering qual-
ity. Rendering virtual terrains and planets in real-time
introduces many challenges, in particular for data rep-
resentation, streaming and high quality rendering. We
address the problem of rendering highly complex ter-
rain databases comprising several hundred gigabytes of
data, which therefore cannot be entirely loaded in mem-
ory nor rendered in real-time. Building upon a generic
solution for terrain streaming, the contributions of this
paper solve important issues for high quality terrain
rendering: adaptive texture mapping, removal of geom-
etry cracks and support of planetary terrains.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

A virtual terrain is first described by geometry, which
provides the relief information. However, the photom-
etry embeds essential clues to the terrain structure and
contents: a high quality terrain texture provides infor-
mation on the ground type, vegetation, climate... We
define a dual decomposition of the photometry informa-
tion that matches the representation of the terrain and
allows for high-performance, independent refinement
of the geometry and photometry. Consecutive levels of
details are filtered for further quality improvement.
While the use of multi-resolution eases the streaming
and rendering of large terrains, artifacts or cracks tend
to appear at the edge of adjacent terrain patches which
use different levels of detail. We introduce a simple and
secure method for stitching together adjacent patches
regardless of their current level of detail.
Virtual terrains are generally considered planar, yield-
ing a straightforward management of elevation data.
However, our method supports arbitrarily large terrain
datasets, and is hence able to render an entire planet
with high detail. We address the representation of
planetary terrains in which the elevation is relative to
a reference ellipsoid instead of a plane. Based on a
gnomonic projection scheme, we devise a crack-free
uniform-angle sampling method for high quality pro-
jected elevation data. Our approach reduces the size of
the dataset while preserving geometry and photometry

details.
Current graphics hardware rely on depth buffering for
determining the polygons visible through each pixel of
the image. At the planetary scale, the precision of the
depth buffer may be challenged, yielding flickering and
crawling artifacts. We solve this issue by adjusting the
clipping planes of the view frustum so that the rendered
planet surface. This increases the depth precision by us-
ing the entire depth representation range, while clipping
parts of the planet located behind the horizon.
This paper is organized as follows: Section 2 describes
relevant previous work in the field of adaptive rendering
of large terrains. Section 3 presents the generic adaptive
streaming solution in which our contributions are inte-
grated. The next sections introduce our contributions:
Section 4 presents our method for adaptively mapping
high quality texture maps. In Section 5, we devise our
method for patch stitching across different levels of de-
tails. Section 6 addresses the rendering of planetary ter-
rains and adaptive clipping.

2 RELATED WORK
Adaptively streaming and rendering huge terrain maps
requires using specifically adapted data structures and
algorithms. An extensive survey of techniques for ren-
dering large terrains have been recently published by
Pajarola et al. [PG07]. This section describes previous
work particularly related to this paper.
To manage those maps all the way from a server hard
disk to a client rendering system, we use an existing
generic solution based on a hierarchy of square blocks
with levels of detail [LMG09]. Section 3 briefly de-
scribes this solution.
The Clipmap [TMJ98] is a powerful solution for huge
texture support in 3D hardware rendering with no con-
straint due to geometry. Geometry Clipmaps [LH04]
extend this concept to geometry and photometry infor-
mation. While this method provides high performance
and quality, the level of detail selection is performed in
circular zones all around the viewer, without accounting
for the actual visual importance of each terrain block.
Furthermore, such circular refinement scheme may in-
troduce a performance hit when streaming the terrain
over a low-bandwidth network.
However, the generic solution we use for adaptive
streaming and rendering can handle any kind of map:
like many other works [CGG+03, WMD+04, Hwa05],
we link two identical hierarchical structures respec-
tively representing textures and elevation.
To avoid cracks between adjacent blocks when render-
ing a hierarchy of geometric terrain blocks, one can use
triangular blocks with fixed resolution on their edges
[Lev02, CGG+03, Hwa05]. This needs no explicit han-
dling but prevents using levels of detail in blocks. Ge-
omipmaps [dB00] use square blocks with levels of de-
tail like us, and fix cracks by skipping samples on the

edges of high definition blocks when they are not used
by their neighbors. There is no multi-resolution block
hierarchy so neighborhood management is simple, but
this is not adapted for large terrains. Finally, one can
solve cracks in a hierarchy of square blocks with no
neighborhood knowledge by selecting LODs at block
edges instead of centers [LKES07]. Block centers are
then rendered using additional sample masks to inter-
nally stitch the LODs of the edges. Unfortunately, this
requires all the data of the terrain to be available so that
both sides of an edge render at the selected LOD.
Planets in Google Earth, NASA World Wind and other
solutions [CH06] use the equirectangular cylindrical or
plate carrée projection, the traditional standard for dig-
ital representations of planets. This projection causes
large sampling distortions for non-equatorial regions:
in particular, polar areas look very stretched when ren-
dered and much redundant data are stored and rendered.
Using a cube to represent the planet like [CGG+03] of-
fers a significant improvement. However this solution
does not use regularly sampled blocks: all samples need
barycentric coordinates to compute their 3D position
from those of the corners of the block. We prefer using
a regular map projection and directly obtain positions
with no additional information or interpolation.

3 GENERIC STREAMING SOLUTION
The generic solution underlying our work adapts to the
speed of the network and the rendering performance of
the client so any database can be used in any conditions
[LMG09] (Figure 1). This section recalls the base data
structure and the algorithms of [LMG09].

Requests
management

Complete
database

Rendering
system

Server Client

Progressive
loading

Network
Adaptive
selection

Partial
database

request

reply (data)

importance

new data

Figure 1: Architecture for adaptive streaming and ren-
dering of terrain data. The user guides rendering on the
client. Selected available data are rendered while miss-
ing data are requested and fetched from the server.

3.1 Data structure
The data structure, presented in Figure 2, consists in
subdividing the sample map into a uniform tree of
blocks, then organizing the samples of these blocks into
a succession of levels of detail (LODs) of increasing
resolution. Successive blocks and LODs share their
data to avoid redundancy: new samples are spatially
interleaved between the previous ones. In addition, a
block only needs the data of its first LOD to be ren-

dered, allowing the other LODs to be loaded progres-
sively.

(b)(a)

(c) (d)

Figure 2: Tree of blocks with levels of detail. a) Suc-
cessive subdivisions of the terrain map on the client side
(red, green, blue). b) The corresponding incomplete
tree. c) First LOD of a 9× 9 block, only solid black
samples are used d) Red samples (second LOD) are in-
terleaved between black ones (first LOD).

3.2 Adaptive streaming
The complete tree of blocks is first stored in a single file
on the server’s hard disk. The data for any client request
are contiguous and their position is obtained directly.
The client then progressively loads data from the server.
A measure of importance guides the order in which data
requests are transmitted. To optimize the relevance of
loaded data and prevent overloading the network, the
request queue is continuously updated.
An incomplete tree of blocks is explicitly stored on the
client and constantly updated with asynchronous split
and merge operations. When a block is created during
a split, it allocates a single 2D array of samples in mem-
ory and obtains its first LOD from its parent. It can then
load and interleave new LODs in previously unused ar-
ray positions.

3.3 Adaptive rendering
The last part of the solution is the selection of data
to render on the client. This part first culls invisible
blocks, then chooses an LOD for each block using a
measure of importance. This measure depends on a
general quality factor that adapts to the rendering speed.
When a desired LOD is unavailable, this triggers a new
data request or tree update operation and an available
LOD is used instead. Once an LOD is chosen for ren-
dering, a precomputed mask extracts its samples from
the array of the block as in [PM05].

4 ADAPTIVE PHOTOMETRY
Texture maps convey much detail about the terrain
such as the local climate, ground type and vegetation.

Such information tends to contain high frequencies,
and therefore the texture maps are usually larger than
elevation maps. Just like the terrain geometry, this
potentially huge amount of data requires an adaptive
management of the levels of detail. We propose to
extend the geometry management scheme presented
in Section 3 by introducing a dual multi-resolution
structure for texture management. Geometry and pho-
tometry are kept coherent by linking their respective
LOD trees.

4.1 Linked trees
Textures are mapped onto the terrain geometry to pro-
vide extra details on the appearance of the ground. As
the texture and elevation LOD trees may have differ-
ent size and depth, we use distinct trees and maintain a
link between the two incomplete trees on the client so
that each elevation block uses an adapted texture block.
In practice, each block stores a link to the block of the
other tree which covers the same terrain area, if any.
Classical texture rendering usually requires mapping
one texture onto each elevation block. Our approach
relaxes this constraint: when rendering an elevation
block, we use its link to the texture tree to find the exact
texture block correspondence. In available, the texture
block is used directly. Otherwise, we recursively query
the parents of the elevation block until a valid linked
texture block is found.
We also introduce two constraints on split and merge
operations to avoid creating texture blocks that cannot
be used due to the lack of corresponding geometry data.
First, we avoid splitting a texture block if the corre-
sponding elevation block does not have any children on
which the refined texture could be mapped. That is, a
texture block cannot split if the linked elevation block
is a leaf of the tree.
The second constraint prevents an elevation block from
merging if its linked texture block has children. That
is, an elevation block cannot merge if the linked texture
block is not a leaf.
Let us recall that our solution aims at streaming terrain
data through heterogeneous networks. Therefore, as de-
scribed in [LMG09], the split and merge requests are
queued and performed asynchronously with a poten-
tially important delay due to network latency. Conse-
quently, we enforce the constraints not only when trig-
gering such operations, but also just before the actual
execution of the operations.

4.2 Implementation Details
This section details specific implementation aspects of
our work for further performance.
The split and merge operations are performed accord-
ing to a measure of importance which depends on the
on-screen coverage of the block. Therefore, we evalu-
ate the importance for geometry blocks, and reuse it to
refine their linked texture blocks.

A terrain block is defined by a triangle mesh, which re-
quires texture coordinates for texture mapping. In our
approach, the elevation tree may be deeper than the tex-
ture tree: a texture block may be mapped onto many
terrain blocks. In this case the texture coordinates must
be adapted to obtain a coherent appearance. Such adap-
tation can be performed inexpensively by transforming
a default texture coordinate set using OpenGL texture
matrices.
Texture LODs are implemented as mipmaps for 3D ren-
dering: when we load a new LOD, we add a mipmap to
the texture to increase quality. To enforce mipmapping
even when only the first LOD of a block is available,
we also create lower resolution mipmaps during splits.
We also take advantage of programmable graphics
hardware to loosen the two constraints of Section
4.1. In those constraints, the refinement level of the
texture tree is limited to avoid mapping several texture
blocks onto one geometry block. Using the support
of multiple textures in the fragment shader, a single
geometry block can be rendered using several texture
blocks.

4.3 Filtering
Although nearest-point subsampling is often acceptable
for elevation maps, aliasing artifacts arise using this
technique for texture maps. We therefore choose to use
filtering when building higher levels of the texture tree
during server file creation. We may use any image fil-
tering method as long as it produces regularly sampled
LODs. Wavelets come into mind, but we prefer using a
scheme that is very fast to decode so it can be used with
low performance clients.
We integrated the Progressive Texture Map (PTM) tex-
ture filtering method [MB03] in our solution (Figure 3).
This multi-resolution scheme perfectly matches the
LOD data structure used in our method. Furthermore,
it uses simple and fast bilinear interpolation, and
stores small delta values within each LOD to losslessly
reconstruct samples using the previous LOD instead
of redundantly transmitting all the samples. This
adds a 8.3% overhead in LOD size compared to point
sampling, but still saves 18.7% compared to redundant
LOD streaming.

(a) Point sampling (b) PTM filtering

Figure 3: Visual impact of texture filtering.

When using texture filtering, different LODs of a block
use different values for a given sample. This prevents
us from using a single sample array for each block. We
therefore store each LOD of the block in a separate ar-
ray. During split operations, we split all of them instead
of creating lower resolution mipmaps.

5 FIXING GEOMETRY CRACKS
Rendering multi-resolution terrains leads to the use of
several levels of detail depending on the importance of
each block. In terms of geometry, adjacent blocks may
have different resolutions and hence cannot be perfectly
stitched, yielding vertical gaps or “cracks” (Figure 4).
This section details a simple yet efficient method for
avoiding such artifacts using edge strip masks to stitch
together a set of geometry blocks with heterogeneous
refinement levels.

(a) Rendering with cracks (b) Block stitching

Figure 4: Our method avoids cracks by stitching
blocks with different resolutions.

5.1 Edge Strip Masks
As explained in Section 3.3, we use triangle strip masks
to extract the samples of an LOD from the common
sample array of a block. As adjacent blocks may have
different resolutions, we aim at adjusting the triangle
strip masks so that the edges of adjacent blocks share
the same set of vertices.
We first propose to subdivide a block into five parts:
inner block samples and four sets of edge samples. We
keep the base idea of strip masks [PM05] in the inner
block for managing the main level of detail of the block.
On the block edges we create triangle strips called edge
strip masks, which stitch the block to the level used in
the adjacent block (Figure 5).
For each edge, edge strip masks systematically reduce
the resolution of the block with the higher definition
LOD, skipping vertices not used by the other block.
Otherwise, we could need data that are not loaded yet.
Note that only one large strip is used for blocks that do
not need stitching.
Note that the edge strip masks undergo the same pro-
cess as regular strip masks: each strip mask is cached
within the graphics memory and reused at need. There-
fore our crack removal technique does not introduce
any processing nor rendering overhead.

(a) (b)

(d)(c)

Figure 5: Edge strip masks for block edges. a) Block
using its last LOD. b) Block using its last LOD, with
edge strip masks on its edges to adapt to its neighbors
based on the LOD difference. Left: no difference, bot-
tom: one level, right: two levels, top: three levels. Red
samples appear stretched for legibility. c) Mirror of (b),
with the strips stitched as when rendered. d) Block us-
ing its next to last LOD.

5.2 Neighborhood management
Deciding which strip edge to use on the edges of a block
requires knowledge of the resolution of its neighbors.
To this end, we maintain a table of one neighbor per
block edge, possibly with a different resolution. To en-
sure coherency and robustness, we do not update the
neighbors list when a neighbor that is on the same tree
level splits: this would lead to more than one neighbor
per edge. In that case, we know that this neighbor block
has equal or higher resolution. As the purpose of edge
strip masks is the reduction of resolution across edges,
we simply use the higher resolution edge strip mask.
Potential reduction will be performed by the higher res-
olution neighbor blocks.

Note that our aim is the removal of cracks at the edges
of the blocks. If an edge is not visible, we simply use
the default strip mask as no adaptation is needed.

5.3 Split and merge constraints
In some cases, we cannot stitch the common edge of
two neighbor blocks. This happens when the lowest-
definition LOD of the block on the lower tree level has
a higher definition than the current LOD of the other
block (see Figure 6). This occurs especially often when
using a block resolution not in 2n +1 form. To enforce
the robustness and reliability of the method, we add
constraints of the split and merge operations to limit
the maximum difference of tree levels between neigh-
bors based on their resolution.

(a) (b)

(c)

Figure 6: Non-stitchable blocks: a) A 7×7 block us-
ing its last LOD. b) A neighbor block located one tree
level lower: it adapts on its left edge. c) A neighbor
block located two tree levels lower. This block cannot
adapt to block (a) as its upper-left sample (in red) is not
shared by this neighbor.

6 PLANETARY TERRAINS
The previous Sections introduce our method for stream-
ing and rendering highly detailed terrains. In this Sec-
tion we propose an extension to planets by mapping a
virtual terrain onto a planet-shaped ellipsoid.

6.1 Map projection
The representation of planetary information such as the
3D relief onto a 2D elevation map requires a step of
projection, which can be done in numerous ways. Plan-
ets are generally modeled using a sphere mapped onto a
rectangle using a cylindrical projection. However, this
projection induces sampling issues: areas around the
poles get far more samples than those around the equa-
tor.
Instead, we map the sphere onto the faces of a bounding
cube. We use the gnomonic projection to project points
from the surface of the sphere onto the corresponding
tangent face (Figure 7). The main reason behind this
choice is a more uniform sampling than simple cylin-
drical projection as well as fast 3D reconstruction. Af-
ter this projection we build a tree of blocks for each side
of the cube, its root block covering the entire side.
Elevation values are relative not to the surface of the
cube but to the reference surface of the planet defined
by a given datum (for instance, the WGS84 standard is
used for the Earth). Using such a datum allows to han-
dle spherical coordinates but reconstruct a more accu-
rate ellipsoidal model of the planet. To render the planet
correctly we first project the samples back into spheri-
cal coordinates. Then, for each sample of a block, we
use the gnomonic projection to get the normalized di-
rection of the corresponding point on the surface from
the center of the planet. We then apply the datum for-
mula and add the de-quantified elevation value of the
sample to get its 3D coordinates in a planet-centric co-
ordinate system for rendering.

(a) (b)
Figure 7: Mapping of a spherical planet onto a cube
with the gnomonic projection. a) The top part of the
sphere (in red) projects onto the top side of the cube. b)
2D cut of the cube along the dotted plane in (a). The
gnomonic projection uniformly samples the cube side
by mapping points from the surface of the sphere onto
the plane of projection based on their direction from the
sphere center.

6.2 Adjusted Gnomonic Sampling
Projecting the planet onto a cube using the gnomonic
projection offers a more uniform sampling than simple
cylindrical projection. However, like any map pro-
jection there are still sampling inconsistencies: the
solid angle covered by a sample is approximately 75%
smaller around the corners of the face than around
the center of projection. To overcome this problem,
we introduce a simple adjustment to the gnomonic
projection for improved sampling quality.
Instead of sampling the plane of projection, we propose
to sample the map directly in spherical coordinates with
steps expressed in terms of angles (Figure 8). Using a
planet-centric cartesian coordinate system whose axes
are aligned with the edges of the cube, we define two
leading axes for each face of the cube, with the third
one passing through the center of projection of this face.
We can then perform independent 2D rotations around
both leading axes in [−π

4 , π

4] using a single angle step to
obtain a 2D sampling of the surface of the planet that
can be projected onto the face of the cube. The samples
are then more evenly distributed on the surface of the
planet: the solid angle covered by a sample is only 33%
smaller around the corners of the face than around the
center of projection, yielding a gain both in terms of
compactness and quality.
When projected using the gnomonic projection, our
samples do not map evenly onto the projection plane.
We note that, in regard to a given leading axis, the 1D
coordinate of the projected sample is the tangent value
of the angle formed by the sample, the center of the
planet and the center of projection (see Figure 8(b)).
Therefore our solution allows us to store sample values
within a simple uniform 2D map. The coordinates of
any sample on the gnomonic plane in [−1,1] can then
be obtained by computing the tangent of the two angles.
Another advantage of this method is its straightforward
integration within our crack removal solution.

u
v

u
v

w w

α

tan α

(a)

(b)

(c)

gnomonic adjusted

u

u
v

w
gnomonic adjusted

Figure 8: Adjusted gnomonic sampling. a) Top view
of the cube. We use vectors −→u and −→v to parameterize
the top face. b) 2D side cuts of the cube along the dotted
line from (a). Gnomonic projection: the line of projec-
tion is uniformly sampled by translating along −→u . Ad-
justed projection: the surface of the circle is uniformly
sampled by rotating around−→v . c) Top views of the face
with projected samples. Gnomonic: the face is a regu-
lar 2D map. Adjusted: we use the tangent of the angles
to get the coordinates of a sample in the plane of pro-
jection.

6.3 Geometry cracks between maps
Our adjusted gnomonic sampling scheme allows for
high quality terrain sampling of each side of the cube.
However, as the sides of the cube correspond to differ-
ent maps, classical crack artifacts may appear when us-
ing heterogeneous resolutions across edges. This sec-
tion explains how our projection can benefit from our
crack removal solution (Section 5).
The core of the method is based on numbering and ori-
enting the faces of the cube in a way that facilitates
neighborhood management: that is, we want to ensure
that blocks are ordered the same way on both sides of a
given edge. This would allow us to use the same system
as for neighbors that are part of the same map. How-
ever, neighbor maps cannot have the same−→u or−→v axis
on their common edge in all cases because they are the
sides of a cube. Figure 9 presents how we organize
the sides of the cube to match the cube edge vectors,
and Table 1 gives the neighborhood correspondences
between sides.

6.4 Rendering and culling improvement
Graphics hardware use near and far clipping planes to
bound the depth of rendered geometry, and we also take
these planes into account when performing view frus-
tum culling. In the case of a planet, which is a very large
body, we want the far plane to be far enough to ensure

0

1 2

3 4

5

0

2 4

3

1 5

(a)

(b)

Figure 9: Orientation and numbering of the faces of
the cube. a) Pattern of the cube with continents of the
Earth for reference. Horizontal axes: −→u , vertical axes:
−→v . b) Side view of the cube (top: visible side, bottom:
hidden side). −→v axes are placed near the “left” edge of
the face (u = 0).

Face # Edge Neighbor # Neighbor edge

Even

Left +5 RightTop +4
Right +2 TopBottom +1

Odd

Left +4 BottomTop +5
Right +1 LeftBottom +2

Table 1: Neighborhood correspondences between the
faces of the cube. Left, top, right and bottom respec-
tively refer to edges where u = 0, v = 1, u = 1 and v = 0.
Neighbor face number is obtained by adding the given
value to the current face number, modulo six.

that no visible part of the planet is abusively ignored.
However, using an arbitrary large near-far difference
make poor use of the depth buffer rendering precision
and causes flickering problems. Moreover, when plac-
ing the far plane behind the planet, all the surface that
is visually culled by the planet itself (the grayed area in
Figure 10) is uselessly rendered. We avoid those issues
by adapting both planes to the position of the viewpoint.
Clipping planes are orthogonal to the viewing direction
and are defined by their distance to the viewpoint. Since
we manipulate only distances and the planet can be ap-
proximated using a sphere, we may work in the plane
defined by the center of the planet, the viewpoint posi-
tion and the viewpoint direction vector.
The far distance corresponds to the horizon and is com-
puted as Figure 10 explains. Equations 1 present how
we compute the desired distance ‖V K‖. Using this
method, the rendered surface gets smaller as the view-
point gets closer to the planet: the adaptive solution can

Figure 10: Horizon culling: we compute the distance
‖V K‖ to the far plane. KM is the 2D projection of this
plane, anything behind it is not rendered. The grayed
area is visually occluded by the planet itself. a) We first
compute ‖V T‖, based on the minimum planet radius
‖OT‖ and the distance ‖VO‖ between the viewpoint
V and the center of the planet O. b) We then add the
constant ‖T M‖ based on the minimum and maximum
planet radii ‖OT‖ and ‖OM‖. c) We then project −−→V M
onto the viewing direction to obtain ‖V K‖.

then use more data to improve the quality of visible and
important areas.

‖V K‖ = ‖V M‖× cosM̂V K (1)

= ‖V M‖× cos(T̂VO−α)
= (‖V T‖+‖T M‖)×

(
‖V T‖
‖VO‖

cosα +
‖OT‖
‖VO‖

sinα) (2)

We compute the near distance in a much simpler man-
ner: the minimum distance to the planet is ‖VO‖ −
‖OM‖. We tune this value using the field of view to
avoid culling parts of the planet on the screen corners.

7 RESULTS
We tested the proposed methods on large global
datasets available online: CGIAR-CSI SRTM for
elevation with 90m definition, and Unearthed Outdoors
TrueMarbleTMfor color with 250m definition. Those
maps use the plate carrée projection: we reprojected
the data before creating our terrain files (Table 2).
The re-projected datasets are 25% smaller than the
source due to the more uniform sampling that filters out
most of the redundant data. In addition, we extended
the server file format to support variable size LODs
and added simple and fast LOD compression using
Zlib to save disk and network bandwidth, leaving
decompression on the client side.
Once we built the files on the server, we connected
a client equipped with a 3.2GHz Core 2 Duo and a
GeForce 9800GTX for a real-time 3D interactive Earth
walkthrough using a screen resolution of 1680× 1050

Input dataset Projection File creation
Name Size Time Size Time Size
SRTM 174G 9h 127G 4h50 15G
TrueMarble 42G 1h40 31G 40m 7G

Table 2: Preprocessing results. Re-projection uses
about the same definition as the source maps. With-
out texture filtering, we obtained a 6GB file in 30 min-
utes for TrueMarble. The SRTM dataset is actually
58GB large but provides incomplete data which we
filled with zeroes, yielding a global virtual 174GB in-
put. Computed files contain a 11-level quad-tree of
53× 53 blocks for each cube side for SRTM, and a 8-
level quad-tree of 168× 168 blocks per face for True-
Marble. We use two LODs per block to get uniform
block update times in performance tests.

pixels and a network bandwidth of 1Mbps as shown on
first page. With a 2 million polygons budget per frame,
the terrain renders at 39.3 frames per second with fixed
cracks. This is a small 4% decrease from rendering with
cracks due to the additional triangle strips. About 5 to
10% of the rendering time is consumed by the generic
solution, the rest being used for rendering.
We also tested the speed of the block update operations
that occur when a new LOD is received. With tex-
ture filtering, creating a 168× 168 LOD takes 0.89ms:
this is only 6% more than without filtering. Using our
planet projection adjustment, reconstruction of the new
3D vertices of a 53× 53 LOD from elevation samples
takes 0.57ms, compared to 0.33ms with plain gnomonic
projection and 0.12ms when simply elevating samples
from a plane. This is an important increase but those
times are still negligible compared to network latency,
even on lower performance clients. In addition, up-
date operations do not directly interfere with rendering
smoothness because they run in a separate thread.

8 CONCLUSION
This paper provides a full-featured solution for real-
time rendering of arbitrarily large terrain datasets
within a client-server context over the internet. We
proposed solutions to critical issues of high quality
terrain rendering: adaptive texture mapping, removal
of geometry cracks and support of planetary terrains.
Our adaptive photometry scheme introduces a dual
multi-resolution data structure for high definition
texture representation. Our solution yields high
performance storage, streaming and rendering.
Artifacts known as “cracks” tend to appear in many
multi-resolution terrain rendering methods. We in-
troduce edge strip masks, an inexpensive and robust
method for cracks removal based on data masks.
As our technique is able to manage fully-detailed,
planet-sized terrains, we propose an adjusted gnomonic
sampling scheme for storing and rendering planetary
terrains accounting for the actual planet shape. We also

propose specific improvements for rendering virtual
planets on graphics hardware.

REFERENCES
[CGG+03] Paolo Cignoni, Fabio Ganovelli, Enrico Gob-

betti, Fabio Marton, Federico Ponchio, and
Roberto Scopigno. Planet-sized batched dy-
namic adaptive meshes (P-BDAM). In Proceed-
ings of IEEE VIS, pages 147–155, 2003.

[CH06] Malte Clasen and Hans-Christian Hege. Terrain
rendering using spherical clipmaps. In Proceed-
ings of EuroVis, pages 91–98, 2006.

[dB00] Willem H. de Boer. Fast terrain ren-
dering using geometrical mipmapping.
In Unpublished and only available at
http://www.flipcode.com/articles/article
_geomipmaps.pdf, 2000.

[Hwa05] Lok M. Hwa. Real-time optimal adaptation for
planetary geometry and texture: 4-8 tile hierar-
chies. IEEE Transactions on Visualization and
Computer Graphics, 11(4):355–368, 2005.

[Lev02] Joshua Levenberg. Fast view-dependent level-
of-detail rendering using cached geometry. In
Proceedings of VIS, pages 259–266, 2002.

[LH04] Frank Losasso and Hugues Hoppe. Geometry
clipmaps: terrain rendering using nested reg-
ular grids. ACM Transactions on Graphics,
23(3):769–776, 2004.

[LKES07] Yotam Livny, Zvi Kogan, and Jihad El-Sana.
Seamless patches for GPU-based terrain render-
ing. In Proceeding of WSCG, pages 201–208,
2007.

[LMG09] Raphael Lerbour, Jean-Eudes Marvie, and pas-
cal Gautron. Adaptive streaming and rendering
of large terrains: A generic solution. In Pro-
ceedings of WSCG, 2009.

[MB03] Jean Eudes Marvie and Kadi Bouatouch. Re-
mote rendering of massively textured 3D scenes
through progressive texture maps. In Proceed-
ings of IASTED, pages 756–761, 2003.

[PG07] Renato Pajarola and Enrico Gobbetti. Survey on
semi-regular multiresolution models for inter-
active terrain rendering. The Visual Computer,
2007.

[PM05] Joachim Pouderoux and Jean-Eudes Marvie.
Adaptive streaming and rendering of large ter-
rains using strip masks. In Proceedings of
GRAPHITE, pages 299–306, 2005.

[TMJ98] Christopher C. Tanner, Christopher J. Migdal,
and Michael T. Jones. The clipmap: a virtual
mipmap. In Proceedings of SIGGRAPH, pages
151–158, 1998.

[WMD+04] Roland Wahl, Manuel Massing, Patrick De-
gener, Michael Guthe, and Reinhard Klein.
Scalable compression and rendering of textured
terrain data. In Proceedings of WSCG, pages
521–528, 2004.

	Introduction
	Related work
	Generic Streaming Solution
	Data structure
	Adaptive streaming
	Adaptive rendering

	Adaptive Photometry
	Linked trees
	Implementation Details
	Filtering

	Fixing geometry cracks
	Edge Strip Masks
	Neighborhood management
	Split and merge constraints

	Planetary terrains
	Map projection
	Adjusted Gnomonic Sampling
	Geometry cracks between maps
	Rendering and culling improvement

	Results
	Conclusion

