Many-Core Event Evaluation

Jean-Eudes Marvie* Patrice Hirtzlin' Pascal Gautron?
Technicolor Technicolor Technicolor

Cores activity
Cores activity

as 1o
Time (ms) Time (ms)

as 1o 132 20

Figure 1: We introduce a novel event evaluation framework using task parallelism on multi/many-core CPU architectures for real-time
animation of complex scenes. Our framework supports 5 dynamic scheduling strategies based on OpenMP and custom Pthread-based
approaches. Parallel evaluation timings for an animation frame on a 6-core CPU are displayed for the implemented custom Pthread-based
(left) and OpenMP-based (right) static schedulers for a population of 1K humanoids generating 110K events per frame. Each rectangle
corresponds to the evaluation of a single scene graph node (bones transformations and skeletal constraint evaluation at left and right figure
parts respectively). The color of each consecutive rectangle is modified automatically for readability purpose. The gaps correspond to the
time spent either in sequential execution or idle.

Abstract proach. Our framework provides real-time execution of many com-

plex animation schemes, each of them handling tens of thousands
We present a Many-Core Event Evaluation framework for real-time event-processing nodes and supporting both non-deterministic and
execution of many complex animation schemes applicable to a wide interaction-driven animation modifications at runtime. Moreover,
range of domains such as gaming and interactive pre-visualization our framework supports cyclic animation graphs.

in studio production. Our technique takes advantages of task par-
allelism on many-core CPU architecture using a two-level schedul-
ing approach. Our generic approach can deal with tens of thou-
sands event-processing nodes, event loops, non-deterministic and
interaction-driven animation modifications at runtime. Versatility is
further enforced through a native support of hierarchical animation
graphs using prototypes and inline files. Our implementation based
on the X3D event-based animation model exhibits performances

Modeling these complex animation schemes can be simplified by
reusing existing sub-animation schemes described in user-defined
(prototype) and sub-file (inline file) nodes. These additional hierar-
chies in the animation graph also have to be accounted for when
parallelizing the event evaluation. As shown in Section 4, our
framework seamlessly provides a consistent speedup for each in-
dividual animation sub-graph.

approaching the theoretical upper bounds of parallelization. In Section 5 we illustrate the performance of our framework by
proposing a parallel event evaluation implementation based on

1 Introduction X3D.

Virtual worlds feature more and more complex animation schemes 2 Related work

simulating various phenomena such as crowd displacement or cloth

deformation. An animation scheme can be modeled by a graph 2.1 Event-based execution model

whose nodes process the events carried by the edges. In the context
of realistic character motion and object deformation, such graph

- . Numerous multimedia systems such as X3D, Qt, MPEG4 system or
may contain tens of thousands event-processing nodes.

Flash Action Script rely on the event-based model. The events are
Besides the challenge of executing one of these animations in real- propagated along paths between specific fields of the scene graph
time, interactive virtual worlds also require both non-deterministic nodes in charge of the animation. The input fields trigger the node
and interaction-driven modifications of animation graph at runtime.
Non-deterministic events can be generated dynamically by a script-
ing node. Interaction-driven events can be generated by sensor
nodes to execute new animation schemes.

[] Scene Graph node
7.12 Evaluation order

———» Eventcascade#1

After a review of event processing and task parallelism (Sec-
tion 2), we introduce in Section 3 a generic Many-Core Event Eval-
uation (MCEE) framework based on a two-level scheduling ap-

—» Eventcascade#2

——» Eventcascade#3

Figure 2: In an event cascade principle, initial events trigger node
evaluations which generate new events toward other nodes. A node
belonging to n cascades is evaluated n times.

*e-mail: jean-eudes.marvie @technicolor.com
Te-mail: patrice.hirtzlin @technicolor.com
te-mail: pascal.gautron@technicolor.com

evaluation, modifying its states accordingly. The output fields are
then the events generated by those state changes. Initial events can
either be generated for each frame (e.g. Time Sensor node) or be
generated occasionally through user interaction or sensor activa-
tion.

The event-based execution model is based on the event cascade
principle (Figure 2). An event, such as a change of input fields,
immediately triggers the node evaluation. This evaluation may gen-
erate new events (e.g. a change in its output fields) towards other
nodes, which are then evaluated. A node belonging to n cascades
is then evaluated n times. A cascade may contain cycles where an
event E is received by a node which generates an event that results
in E being generated again. In that case, the cycle shall be detected
and broken to execute a single animation sequence per frame and
avoid infinite looping.

Following the dataflow programming paradigm derived from Den-
nis and Misunas [1975], the event evaluation can be seen as task
executions in a certain order to satisfy their dependencies. The ani-
mation can be then expressed as a directed dependency graph called
animation graph, in which the event-processing nodes of the scene
graph are linked by the event paths representing the dependencies.

The event-based execution model requires a depth-first traversal of
the animation graph. Parallelism can be directly achieved using a
thread per cascade but raises 2 major issues. First, if a node belongs
to more than one cascade, a time-consuming synchronization step
is required at each evaluation to ensure that all input fields are up-
dated (Figure 3a). Second, parallelism cannot be easily achieved for
animation sub-graphs enclosed within prototype nodes (Figure 3b).

Another issue for parallel event evaluation is the support of events
having non-deterministic side effects on the animation graph itself
at runtime, such as the insertion/removal of nodes and paths (Fig-
ure 3c).

2.2 Task parallelism

The dataflow programming paradigm is composed of two main
steps. The task partitioning step is performed prior to execution to
cluster tasks according to the dependency graph. Ideally the tasks
within a cluster are independent and can be executed in parallel to
reduce synchronization overhead. The order of execution of these
clusters is set to meet the dependencies requirements.

The scheduling step is then performed at runtime by iterating on the
clusters in the defined order. The tasks of a cluster are distributed
among the available processing units. The distribution strategies are
numerous, from simple static equal-size task allocation to complex
dynamic allocation based on heuristics such as task execution time.

The parallelization of a large number of heterogeneous time-
consuming tasks can be achieved using a cluster of processors.
The related frameworks rely on underlying dataflow models pro-
vided by a distributed middleware. The datafiow model is based on
modules, each of them running on a processing unit, exchanging
data through connections. DRONE [Repplinger et al. 2009] relies
on the Network-Integrated Multimedia Middleware (NMM) [Lohse
et al. 2008]. FlowVR Render [Allard and Raffin 2005] relies on
FlowVR [Allard et al. 2004] for the distributed rendering and dis-
play application. This kind of distributed architecture is also used
for collision detection and physics simulation. Allard and Raf-
fin [2006] perform physics simulations using Flow VR [Allard et al.
2004]. Hermann et al. [2009; 2010] perform parallel physics simu-
lations at the body level using the KAAPI middleware [Gautier et al.
2007] for dynamic load balancing using a work-stealing mechanism
over a cluster of multiprocessors.

[] Scene Graphnode

D Synchronization step
——» Event cascade onthread #1
—— Eventcascade onthread#2

— Eventcascade onthread #3

(a) Synchronization steps for single node evaluation

(] Scene Graph node

Prototype —— Eventcascade onthread #1

node —__» Eventcascade onthread#2
—— Eventcascades onthread#1
(no parallelism for enclosed subgraph)

(b) Hierarchical animation graph leading to sequential sub-graph
evaluation

0\‘\
b ° >< Path deletion

(c) Node evaluation leading to a path deletion in the animation
graph

@ Scene Graphnode —— Event cascade onthread#1

—» Eventcascade onthread#2

Figure 3: Issues for parallel event evaluation. A per-cascade par-
allelism introduces time-consuming synchronization steps (a) and
prevents parallelism for prototype evaluation (b). The support of
non-deterministic side effects on the animation graph at runtime
(c) requires further synchronization mechanisms.

These frameworks target an unified solution for parallel execution
on both multi-core and cluster environments, hence integrating net-
work management at their lowest level. Our MCEE framework has
been designed from ground-up to be executed on a many-core CPU
processor of an unique machine leading to optimized lightweight
thread management.

More lightweight frameworks exploiting task parallelism have been
demonstrated for data visualization [Vo et al. 2010] and physics
simulation [Thomaszewski et al. 2008]. However, they do not ad-
dress hierarchical scene graphs and do not support dynamic side
effects on the dataflow.

Related to dataflow in interactive general-purpose Virtual Real-
ity (VR) applications, Figueroa [2010] presents an abstraction for
parallel execution within the InTml interaction technique markup
language. It provides a mechanism for node replacement in the
dataflow allowing references to dynamic objects. However, the in-
sertion and removal of paths, as well as hierarchical scene graphs
are not addressed.

Dataflow techniques have already been used for some anima-
tion applications. Klein et al. [2012] propose a framework for
real-time mesh interpolation and skeletal animations. In combi-
nation with XML3D, this framework provides high performance
general-purpose data processing for real-time or interactive Web
applications using a declarative language to describe the dataflow.
However, the described execution model uses a pull-based execu-
tion phase and hence does not support continuous multidirectional
changes. This framework hence does not support graph cycles, hier-
archical graphs and nodes whose evaluation may dynamically alter
the dataflow. Watt er al. [2012] introduce a parallel character anima-
tion framework handling thousands of nodes in studio production.
This approach provides two levels of parallelism: at animation de-

pendency graph level using Intel Concurrent Collections [Budim-
lic et al. 2010] and at node level for the expensive nodes such as
deformers, tessellators and solvers using Intel Threading Building
Blocks [Reinders 2007]. While providing convincing results, this
framework supports a limited number of unique evaluation paths
(up to 100). Moreover, it also does not support side effects on the
dataflow.

Compared to the previous work, our MCEE framework provides
the main contributions:

e Support of an arbitrary number of nodes and event routes

e Support of non-deterministic side effects on the animation
graph at runtime

e Preserved parallelism in hierarchical animation graphs

e Support of cycles in the animation graph

3 The MCEE framework

3.1 Principle

Two levels of parallelism can be exploited for the event evaluation
on many-core CPU architectures. Node level parallelism is suited
to the evaluation of time-consuming nodes, such as mesh deform-
ers. This approach is efficient when handling only few nodes as it
introduces concurrency among the threads to access to the available
processing units. Graph level parallelism is adapted to the evalua-
tion of numerous nodes. The addition of a node-level parallelism to
a graph-level parallelism only provides a marginal speedup [Watt
et al. 2012]. Therefore, the MCEE framework exploits only the
graph level parallelism to achieve real-time animation of complex
scenes.

While graph level parallelism can be directly achieved using a
thread per event cascade, this approach becomes intractable due
to synchronization issues. Instead, our framework uses a dataflow-
based approach by partitioning the node evaluation into indepen-
dent batches in such a way to avoid any thread synchronization. As
detailed in Section 3.2, the order of these batches corresponds to a
breadth-first traversal of the animation graph. Our framework also
creates as many threads as the available processing units to avoid
thread concurrency.

Thread#0 Dynamic scheduler

{main)

l Event flow vector
l:‘ Sequential section

fori=0;

i<flowVectorSize; |:|

i+

Evaluation of parallel batch
Evaluation of sequential batch

Side effect on
animation graph 2.

Animation graph

Parallel section

Static scheduler

— Event flow vector—»
1st | 2nd| 3rd | 4th | 5th

.

No

Event cascading to
next flow vector element

[]

® Parallel node
Sequential node
X Path deletion

Requests a new event flow vector
Exit

Figure 4: The MCEE framework is based on a two-level scheduling
approach. From the animation graph, the static scheduler creates
an event flow vector containing the batches of nodes to be eval-
uated. At runtime, the dynamic scheduler iterates on the vector
elements and creates a succession of parallel and sequential steps.

Our framework is composed of the task partitioning and scheduling
steps (Figure 4). Task partitioning is performed by the static sched-
uler prior to the execution when the animation graph has been mod-
ified (insertion/removal of nodes and paths). The static scheduler
(Section 3.2) defines the batches of nodes to be evaluated from the
animation graph and inserts them into an event flow vector. Each
element of the event flow vector contains two batches for efficient
scheduling: The parallel batch contains the nodes incurring no side
effect on the animation graph. The other nodes are processed in the
sequential batch.

The scheduling step is performed at runtime by the dynamic sched-
uler running on the main thread. This scheduler iterates on the event
flow vector elements to create a succession of parallel and sequen-
tial steps meeting the dependency constraints.

The parallel batch is then divided into sub-batches and distributed
among the available processing units. These sub-batches can be
evaluated independently, without any synchronization. We imple-
mented both static and dynamic allocation strategies (Section 3.3).

The nodes of the sequential batch are evaluated sequentially to han-
dle the potential side effects on the animation graph. Upon detec-
tion of a side effect, the dynamic scheduler stops the entire frame
evaluation, requests a new event flow vector from the static sched-
uler for the current animation frame and re-executes that frame
from the beginning. If no side effect has been detected, the event is
cascaded towards the next element of the event flow vector.

In practice most of the nodes do not modify the animation graph
and are therefore processed in the parallel batches of the event flow
vector. This allows the dynamic scheduler to achieve significant
parallelism speedup.

3.2 Static scheduling

Starting from the animation graph the static scheduler creates an
event flow vector containing batches of nodes meeting the event
evaluation dependencies.

The event flow vector is created by iterating over the animation
graph based on the node dependencies (Figure 4 and Algorithm 1).
For each node, we first initialize a dependency counter with its
number of direct predecessors. Each node inserted in the event flow
vector decrements the dependency counters of its direct successors.

The nodes having no predecessor are placed at the first element
(¢ = 0) of the event flow vector. These nodes have no dependency
and hence are ready to be evaluated. Further elements ¢ of the event
flow vector are created as follows:

Vnode € EFV | EFV.rank(node) =i — 1,
Vnode' € Succ(node) / node’.c =0 (1)
= EFV.rank(node') = 1,

where node, and node’ are nodes of the animation graph, EFV is
the event flow vector, rank(node) is the element of the event flow
vector which contains node, Succ(node) is the set of direct succes-
sors of node in the animation graph and c is the node dependency
counter.

Nodes incurring side effects on the animation graph can be easily
identified using a flag or the type of the event path. The evalua-
tion of these nodes requires synchronization to update the anima-
tion graph and hence cannot be performed in parallel. Therefore,
each element of the event flow vector contains a sequential batch
for these specific nodes and a parallel batch for all the other nodes.

Algorithm 1 Creation of the Event Flow Vector (EFV)

Algorithm 2 Loop handling

EFV .clear()
nodelList.clear() // list of nodes to be sorted
for all node € animationGraph do
if node.hasPredecessor() then
/I node.visited = FALSE // loop check init
nodeList.pushBack(node)
else
if node.isSequential() then
// add to the sequential batch
EFV[0][1].insert(node)
else
/I add to the parallel batch
EFV[0][0].insert(node)
end if
end if
end for

1=0
while nodeList.size() != 0 do
// insert Algorithm 2 for loop handling
for all node € EFVi] do
for all node’ € Succ(node) do
Il node’ wisited = TRUE // loop check set
node’.c=node’.c - 1
if node’.c = 0 then
/I add node’ to the (i+1) element of EFV
if node’ isSequential() then
// add to the sequential batch
EFV[i+1][1].insert(node’)
else
/ add to the parallel batch
EFV[i+1][0].insert(node’)
end if
/I remove node’ from nodeList
nodeList.erase(node’)
end if
end for
end for
++
end while

As shown in Figure 4 the nodes contained within a parallel batch
of an element of the event flow vector are independent and can be
processed in parallel, avoiding the need for intra-element synchro-
nization.

Handling event loop detection and breaking Without proper
detection, event loops result in a failure of Algorithm 1. We there-
fore enrich this algorithm to detect and break any event loop during
the event flow vector creation (Figure 5).

Our technique (Algorithm 2) is based on the observation that the
element ¢ — 1 of the event flow vector is emgty when a loop ex-
ists between the nodes to be inserted in the i*" element due to the
condition of a null dependency counter. Therefore, all the succes-
sor nodes which have been previously visited but not inserted in
the event flow vector due to this condition are tagged. Then, once
a loop is detected (empty element ¢ — 1 of the event flow vector),
it is broken by forcing the addition of a tagged node to this empty
element ¢ — 1.

if EFV[i].size() == 0 then
// loop detected
node = NULL
isNodeFound = FALSE
index =0
while !is N ode Found do
node = nodeList[index]
if node.visited then
isNodeFound = TRUE
end if
index++
end while
if node.isSequential() then
EFV[i][1].insert(node)
else
E FV[i][0].insert(node)
end if
node List.erase(node)
end if

3.3 Dynamic scheduling

Running on the main thread, the centralized dynamic scheduler it-
erates linearly over the event flow vector (Figure 6) to evaluate the
parallel and sequential batches. The events are then cascaded to
the next element of the event flow vector.

Parallel batch evaluation We implemented two approaches for
the node distribution among the available processing units. A
custom Pthread-based approach using a static thread pool and an
OpenMP-based approach using a for loop iterating over the nodes
of each parallel batch. We use as many threads as available pro-
cessing units to avoid thread concurrency.

Static and dynamic node allocation strategies have been tested for
both approaches. The static strategy creates as many sub-batches as
available processing units. Each sub-batch contains approximately
the same number of nodes and is assigned to a thread. This strat-
egy requires less thread synchronization but can lead to unbalanced
evaluation time among threads. The dynamic strategy initially al-
locates one node per thread. Threads then pick unevaluated nodes
in a queue. This strategy requires more thread synchronization but
improves load balancing (Figure 13).

We also implemented OpenMP-guided strategy with a default
chunk size of 1 for benchmark purposes. This strategy provides
a tradeoff between the static and dynamic strategies.

Event flow vector —»

Event flow vector —»

1st 2nd 3rd
under progress

loop to empty
detect & break element addition

(2) (b) (©)

Figure 5: An event loop (a) is detected when creating the third ele-
ment of the event flow vector as the second vector element is empty
(b). The loop is broken by forcing the addition of the previously
visited node to the second vector element (c).

Thread#0
(main)

Event flow vector
fori=0;
i<flowVectorSize;
i++

Initial sub-batch creation
Sub-batch allocation & l &

Thread #1
(onCPU core #1)

Evaluation of the parallel batch

Thread#n
(on CPU core #n)

Thread#2
(onCPU core #)

L] soe
Sub-batch Sub-batch
A evaluation evaluation
sub-batches < + +
evaluated 7
T
v Evaluation of the sequential batch

Sequential node evaluation

Event
cascading|
L| tonext
flow
vector
element L

Request a new event flow vector
Exit

Figure 6: The dynamic scheduling algorithm is executed on the
main thread. Parallel and sequential batch evaluation steps are
executed for each element of the event flow vector.

Sequential batch evaluation This step deals with the evaluation
of nodes potentially altering the animation graph, including the ad-
dition or removal of nodes and event paths. In order to be able
to stop the entire node evaluation process upon detection of a side
effect, each node of the sequential batch is successively evaluated
by the main thread. The event flow vector is then rebuilt by the
static scheduler for the current animation frame (see Algorithms 1
and 2). Finally, the dynamic scheduler executes the new animation
frame from the beginning.

Local event cascading The evaluation of the nodes belonging to
the batches of the event flow vector elements can also generate new
events. Such events are cascaded to the input fields of the nodes
belonging to the next element of the event flow vector (Figure 7).

Parallel event cascading involves time-consuming synchronization
steps before accessing to the input fields of nodes belonging to sev-
eral cascades. Cascading also requires sequential read and write
operations for each event. Therefore we choose to perform event
cascading sequentially as no significant parallelism gain can be ob-
tained.

Event flow vector ——»
. Scene Graph node

D im {i+1}m

|:| Input fields

[] Outputfields
Event cascade #1

—p Eventcascade#2

Figure 7: The evaluation of nodes belonging to the element i of the
event flow vector generates a change in their output fields. These
new events are cascaded to next element of the event flow vector.

Inline File #1

e

! InlineFile #2

Scene Graph /

Figure 8: Animation contexts C; are created for the main file
and for each prototype or inline file node of the hierarchical scene
graph.

4 Hierarchical animation graphs

Many complex animation schemes reuse some existing sub-
schemes using prototypes and inline files, introducing hierarchies
in the animation graph. We propose an enrichment of our frame-
work to provide a consistent parallelism speedup throughout the
entire animation.

4.1 Prototype and inline file mechanisms

A prototype is a powerful mechanism for creating user-defined
reusable objects. Each prototype node instantiates the reusable ob-
jects in the scene graph with specific input data values. A prototype
node contains a scene graph with an associated animation graph.
This prototype scene graph can be considered as an enclosed scene
graph interfaced externally through the profotype input and output
declaration fields.

An inline file node also contains a scene graph with an associated
animation graph. This scene graph is completely independent and
can be considered as an adjacent scene graph.

4.2 Hierarchical MCEE framework

We support hierarchical graphs by introducing animation contexts
created for the main file of the scene graph and for each prototype
or inline file node (Figure 8). Each animation context C; contains
its own animation graph and its own static scheduler generating an
event flow vector.

The hierarchical MCEE framework shall ensure that each anima-
tion context is evaluated once per frame while enforcing parallelism
across all levels.

Per-frame unique animation context evaluation The dynamic
scheduler now contains a list of animation contexts. For each
frame, we evaluate the animation by evaluating each animation con-
text if needed (Figure 9).

Many-core animation context evaluation Animation contexts
can be considered as adjacent in the case of inline files or enclosed
when prototypes are used. Adjacent animation contexts can be sim-
ply evaluated sequentially by the dynamic scheduler, using all the
processing units. Enclosed animation contexts, however, require an
extension of both schedulers to optimize the usage of the computa-
tion resources. To this end, we add a hierarchical batch to the ele-
ments of the event flow vector. This batch contains the nodes having

C1 22 gg 34 25 38
o
c, Cs
O O
)
C,
o

Figure 9: Per-frame unique animation context evaluation of the
scene graph of Figure 8. The dynamic scheduler iterates on its list
of animation contexts and triggers the evaluation only if the current
animation context was not previously evaluated.

an enclosed sub graph. A prototype node is then inserted into the
hierarchical batch as well as the parallel or sequential batch.

At runtime, the dynamic scheduler evaluates the hierarchical batch
between the sequential batch evaluation and the cascading steps
(Figure 10). The nodes belonging to the hierarchical batch are eval-
uated sequentially, allowing the execution of each sub-animation
graph with all available processing units. The execution of each
sub-animation graph (triggered by the associated node) is again
composed of all the parallel and sequential evaluation steps detailed
in Section 3.3. The event cascading step finally cascades the events
to the output fields of the prototype node, allowing their propaga-
tion in the enclosing animation graph.

Thread #0

(main)

Event flow vector

fori=0; P Event cascading to next

|<fluw\/_ector5|ze; < | flow vector element
i+

]
Evaluation of Evaluation of| &
parallel batch sequential
batch

Evaluation of
hierarchical batch

:}.
I

| I

Figure 10: The dynamic scheduler is extended by adding a new
hierarchical evaluation step between the sequential batch evalu-
ation and the cascading steps. This new step evaluates the pro-
totype nodes sequentially, allowing an execution of the animation
sub-graphs with all available processing units. Once evaluated, the
events are cascaded to the output fields of the prototype node, al-
lowing their propagation in the enclosing animation graph.

5 Implementation and Results

5.1 X3D event-based animation model implementation

The X3D event-based animation model provides features to support
complex animation schemes. The event evaluation module is called
the execution engine. The event paths are called routes and the
animation graph is called route graph.

We implemented our framework within the X3D execution engine
(Figure 11), whose underlying model enables both continuous and
user-activated events. It also specifies prototypes and inline files
and allows the definition of event loops.

Side effects on the route graph itself are also allowed at runtime.
In order to provide variety in the animation, non-deterministic side

Scens =l 2verts Execution

Sensar ¥ ol ettt Tty i engine
graph ‘ Dynamic =l
nodes | cltpitleyents ’ scheduler +
i A
i Static
»
> Hodes I Lagl scheduler
AN i
oo __|d addidelete
™ n‘:dnep; route wl FRoute
direct Dutput araph
input events #e\.ﬂen{s

Figure 11: Our static and dynamic schedulers have been imple-
mented within the X3D execution engine.

effects (node or path insertion/removal) can be generated through
the evaluation of directOutput-enabled Script nodes. The evaluation
of any node having routed SFNode/MFNode fields may also lead to
node removal. As these characteristics can easily be detected, the
nodes having potential side effects are inserted in the sequential
node batches when constructing the event flow vector.

5.2 Results

We benchmarked our technique on X3D scenes, running on a 6-core
2.67GHz Intel Xeon CPU processor.

Scene 1 is composed of 3,200 objects being continuously translated
and rotated. This scene uses a single TimeSensor node to gener-
ate an initial event. Then, 3,200 OrientationInterpolator and 1,248
PositionInterpolator nodes cascade the initial event to 3,200 Trans-
form nodes to modify the object positions. A total of 5708 events
are generated per frame.

Scene 2 is composed of one animated biped creature. The crea-
ture comprises 48,855 vertices split into 63 objects implemented
by IndexedFaceSet nodes. The vertices and normal vectors of the
geometry are modified using CoordinateInterpolator and Normalln-
terpolator nodes. A single TimeSensor node is also used to generate
an initial event. A total of 252 events are generated per frame.

Scene 3 is composed of a population of 1K humanoids represented
using HAnimHumanoid nodes. Two TimeSensor, 54 Orientation-
Interpolator and one PositionInterpolator nodes are used to animate
each humanoid. A total of 110K events are generated per frame.

We compare the speedups measured in Scene 3 (Table 1) to the
theoretical upper bounds S given by Amdahl [1967] :

1

=, 2
—— @)

where n is the number of available processors and p is the fraction
of job that can be executed in parallel. In Scene 3, p is 1 minus the
proportion of the execution time spent in the cascading step.

We achieve speedups close to the Amdahl Law due to the avoid-
ance of inter-thread synchronization. The difference between the
measured and theoretical speedups can be explained by the sequen-
tial memory accesses and by the data and code cache faults at the
operating system level.

Our test scenes are composed of two-fold event cascades. In other
words, the size of the event flow vector equals to three.

The activity of the 6 cores over a single frame of each scene is
charted in Figures 1 and 13 for various scheduling strategies. Each
rectangle corresponds to the evaluation of a single scene graph
node. The color of each consecutive rectangle is modified auto-
matically for readability purpose. The evaluation time of the Time-
Sensor is negligible and is not visible. The evaluations of the nodes

a
n

—e—Pthread static 4.5

—li—Pthread dynamic

—#—Pthread static —e—Pthread static

=—@—Pthread dynamic == Pthread dynamic

OpenMP static

——0penMP guided 35

140 I\
130 \

OpenMP static 120 OpenMP static

== OpenMP guided

P
|

v

—f=—0penMP dynamic

=
n

== 0penMP guided

wo |\
\

== O penMP dynamic == OpenMP dynamic

IS

AN

.ﬂ
%] Q
(=] Q
—

w
n

Execution time {ms)
Execution time (ms)

Execution time {ms)

57/

w

70

AN
25 \ 15
: N |
15 \—_X !

1 0.5

T~ %

1 2 3 4 5 6 1 2 3

Number of cores

Number of cores

30
4 5 6 1 2 3 4 5 6

Number of cores

Figure 12: Measured execution time for a single frame of Scenes 1 (left), 2 (middle) and 3 (right). These values include the time spent in the

sequential cascading step, respectively 0.3ms, negligible and 11.5ms.

2 cores | 4cores | 6 cores
Amdahl Law 1.85 3.21 4.25
Pthread static 1.75 3.04 3.89
Pthread dynamic 1.61 2.50 3.18
OpenMP static 1.84 3.04 4.00
OpenMP guided 1.79 3.11 4.00
OpenMP dynamic 1.59 2.50 3.18

Table 1: Measured speedups for Scene 3 using 2, 4 and 6 cores,
compared to the theoretical Amdahl Law.

belonging to the second and the third elements of the event flow
vector are drawn at left and right figure parts respectively. The gaps
correspond to the time spent in the sequential event cascading from
the output fields of the nodes belonging to the current element to
the input fields of the nodes belonging to the next element of the
event flow vector combined with the idle time.

The OpenMP-based scheduling strategies exhibit better perfor-
mance compared to our custom Pthread-based implementation as
they avoid thread wake-up using spinlocks. However, having all
the available processing units performing spin-locking within the
event evaluation can also be a drawback if the cores needs to si-
multaneously perform other tasks. Moreover, spinlocks also reduce
battery life and raise the temperature of the devices.

‘We compare various scheduling strategies with respect to the num-
ber of processing units (Figure 12).

A significant parallelism speedup is achieved for all scenes and
scheduling strategies. The main speedup is obtained when switch-
ing from a mono-core to a dual-core configuration. Executing the
animations over more than 6 cores do not significantly improve the
speedup. The performance of each scheduling strategy depends on
the type of animation. For animations involving the motion of nu-
merous objects or characters with lightweight animation (Scenes 1
and 3), the static scheduling approaches exhibit better performance.
Conversely, dynamic scheduling is more adapted to heavy mesh
deformation (Scene 2) as the node evaluation times are heteroge-
neous. The OpenMP-guided scheduling strategy offers a tradeoff
which can be chosen for intermediate animation types.

Therefore, all five scheduling strategies have their own benefits and
drawbacks. The final choice depends on the user requirements in
term of animations and hardware platforms. However, in any con-

text our two-level scheduling scheme will bring the benefits of un-
hindered parallel computing architectures.

6 Conclusion

We presented a novel lightweight framework for parallel event eval-
uation on many-core platforms. Our formulation exhibits signifi-
cant speedups yielding real-time evaluation of many complex ani-
mation schemes handling numerous (tens of thousands) events per
frame. In some cases we achieve close-to-linear speedups using a
6-core architecture.

The proposed framework is also highly generic, handling complete
animation models including nodes having runtime side effects on
the animation graph, prototype and inline file mechanisms as well
as cyclic event routing.

References

ALLARD, J., AND RAFFIN, B. 2005. A shader-based parallel ren-
dering framework. Proceedings of IEEE Visualization, 127-134.

ALLARD, J., AND RAFFIN, B. 2006. Distributed physical based
simulations for large VR applications. Proceedings of IEEE Vir-
tual Reality, 89-96.

ALLARD, J., GOURANTON, V., LECOINTRE, L., LIMET, S.,
MELIN, E., RAFFIN, B., AND ROBERT, S. 2004. FlowVR:
a middleware for large scale virtual reality applications. Pro-
ceedings of Euro-Par, 497-505.

AMDAHL, G. 1967. Validity of the single processor approach
to achieving large scale computing capabilities. Proceedings of
American Federation of Information Processing Societies, 483—
485.

BUDIMLIC, Z., BURKE, M., CAv, V., KNOBE, K., LOWNEY, G.,
NEWTON, R., PALSBERG, J., PEIXOTTO, D., SARKAR, V.,
SCHLIMBACH, F., AND TASIRLAR, S. 2010. Concurrent col-
lections. Scientific Programming 18, 3-4,203-217.

DENNIS, J., AND MISUNAS, D. 1975. A preliminary architecture
for a basic data-flow processor. Proceedings of the Symposium
on Computer Architecture, 126—132.

FIGUEROA, P. 2010. Insights on the design of InTml. Presence 19,
2 (April), 118-130.

GAUTIER, T., BESSERON, X., AND PIGEON, L. 2007. KAAPI: a
thread scheduling runtime system for data flow computations on
cluster of multi-processors. Proceedings of International Work-
shop on Parallel Symbolic Computation, 15-23.

HERMANN, E., RAFFIN, B., AND FAURE, F. 2009. Interactive
physical simulation on multicore architectures. Proceedings of

Eurographics Workshop on Parallel Graphics and Visualization,
1-8.

HERMANN, E., RAFFIN, B., FAURE, F., GAUTIER, T., AND AL-
LARD, J. 2010. Multi-GPU multi-CPU parallelization for inter-
active physics simulations. Proceedings of Euro-Par on Parallel
Processing: Part 11, 235-246.

KLEIN, F., SONS, K., RUBINSTEIN, D., AND BYELOZYOROV, S.
2012. Xflow - declarative data processing for the Web. Web3D
symposium, 37-45.

LOHSE, M., WINTER, F., REPPLINGER, M., AND SLUSALLEK,
P. 2008. Network-integrated multimedia middleware (NMM).
Proceedings of ACM Multimedia, 1081-1084.

REINDERS, J. 2007. Intel threading blocks. O’Reilly.

REPPLINGER, M., LOFFLER, A., RUBINSTEIN, D., AND
SLUSALLEK, P. 2009. DRONE: A flexible framework for dis-
tributed rendering and display. Proceedings of ISVC, 975-986.

THOMASZEWSKI, B., PABST, S., AND BLOCHINGER, W. 2008.
Parallel techniques for physically based simulation on multi-core
processor architectures. Computer Graphics Forum 32, 1, 25-40.

Vo, H., OsMARI, D., SUMMA, B., CoOMBA, J., PAscuccl, V.,
AND SILVA, C. 2010. Streaming-enabled parallel dataflow ar-
chitecture for multicore systems. Computer Graphics Forum 29,
3,1073-1083.

WATT, M., CUTLER, L., POWELL, A., DUNCAN, B., HUTCHIN-
SON, M., AND OCHS, K. 2012. LibEE: A multithreaded de-
pendency graph for character animation. Proceedings of Digital
Production Symposium, 59—66.

Cores activity

Cores activity

T T T T T
a
Time (ms) Time (ms)

Cores activity

Cores activity

as0 108 128 128
Time (ms)

T T T T T
arz as0

as0 1.08
Time (ms)

Time (ms)

Cores activity
Cores activity

Cores activity
Cores activity

ase a7z aso 108
Time (ms)

Cores activity

Cores activity

Time (ms)

Time (ms)

Figure 13: 6-core evaluation of a single frame of the Scene 1 (left) and Scene 2 (right). From top to bottom: static, guided and dynamic
scheduling using OpenMP, static and dynamic scheduling using custom Pthread. Each rectangle represents a single animated node. The
color of each consecutive rectangle is modified automatically for readability purpose. The evaluation of the nodes belonging to the second

and the third elements of the event flow vector are drawn at left and right figure parts respectively. The gaps correspond to either sequential
steps or idle time.

