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Figure 1: During assets initial setup, misalignments may lead to floating objects or inter-penetrations at the end of the pipeline (Left), leading
to rollbacks on the modeling or animation steps. The lack of shading and shadowing prevents from detecting such errors easily (Middle). We
propose an integrated real-time solution that provides a visual feedback to determine whether 3D objects are in contact with each other or not
(Right). In the blue rectangle, green pixels overlaid by our technique indicate that objects are in contact as expected; in the red rectangle, no
contact is detected while there should be one.

Abstract

We present in this paper a production-oriented technique designed to visualize contact in real-time between 3D objects. The
motivation of this work is to provide integrated tools in the production workflow that help artists setting-up scenes and assets
without undesired floating objects or inter-penetrations. Such issues can occur easily and remain unnoticed until shading and/or
lighting stages are set-up, leading to retakes of the modeling or animation stages. With our solution, artists can visualize in
real-time contact between 3D objects while setting-up their assets, thus correcting earlier such misalignments. Being based on
a cheap post-processing shader, our solution can be used even on low-end GPUs.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.3]: Three-Dimensional Graphics and
Realism—Display Algorithms Computer Graphics [I.3.7]: Three-Dimensional Graphics and Realism—Animation;

1. Introduction

In film production pipelines implying CGI, modeling and anima-
tion are usually the first steps to be performed. Animations of 3D

models are thus generated without lighting and shadowing infor-
mation. However, these information can be crucial when it comes
to positioning 3D objects within the scene. For instance, in case of
a walking virtual 3D character, its feet shall touch the ground to
produce realistic images. However, without shadows visualization,
this simple constraint can become a very tedious task (Figures 1, 4).
This problem may only appear at the end of the production process,
when lights are set up in the 3D scene, implying costly retakes, back
to the animation step. Similarly, undesired inter-penetrations may
also remain unnoticed until shading is performed (Figure 2).

In this paper, we propose a solution to overcome this problem

through the use of a simple image filter that detects contact and
inter-penetration between 3D objects. When a contact is detected,
or when objects are very close to each other, the color of the corre-
sponding pixels is altered to provide a visual feedback to the artists
(Figure 1). This filter is cheap and has been implemented on the
GPU as a post-processing shader. This approach fits well in pro-
duction workflows as only errors visible from the camera need to
be corrected, contrary to games or virtual worlds where contacts
need to be consistent everywhere.

After discussing existing techniques on contact detection and vi-
sualization between 3D objects, we describe the core of our post-
processing algorithm. Its performances and limitations are then dis-
cussed before concluding the paper.
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Figure 2: Inter-penetration detection example. Left: a Lambert-
shaded character during animation setup. Right: our solution en-
lightens both that the shirt is in contact with the neck as expected
(blue rectangle), and that undesired inter-penetration between the
shirt and the torso occur (red rectangle).

(a) Without shadows (b) With shadows

Figure 3: Contacts become clearly visible with shadows, but they
are too complex to compute in some cases, for instance when ani-
mations are set up.

2. Related Works

As already stated in the introduction, since contact or inter-
penetration mistakes imply errors in the lighting passes, shadowing
techniques [ESAW11] can be used to determine visually whether
two 3D objects are in contact (Figure 3). However, since these
methods are generally too costly to be computed in real-time at
modeling or animation steps, and since they are completely differ-
ent from the technique described in this paper, we will not detail
them in this document.

Our solution can be more closely related to collision detection
techniques in physics simulations [JTT00, KHI∗07]. One of the
main problems to be solved in physics simulation is the detection
of collision and / or inter-penetration of different 3D objects. Tra-
ditionally, collision detection is performed in object space (i.e. in
the 3D geometric space) on a per-object basis, while our technique
enlightens contacts in image-space on a per-pixel basis.

The goal of collision detection in object-space is to determine
physical forces applied to the 3D objects within the scene [JTT00].
It thus requires precise geometric information on the contacts them-
selves to evaluate the forces resulting from these contacts. On the
other hand, our method only detects the existence of contacts and
does not need precise description of the contacts themselves. As
a consequence it can be computed much faster and without using
object-based computations.

There also exist in the literature image-based collision detection
techniques [BWS98,MOK95,FAFB08]. However, as in the object-
based case, the goal is to compute a physics simulation and thus

Figure 4: Left: the feet of the character are above the ground. Right:
they are in contact with it. As one can see, it is impossible to tell
from this point of view whether the feet are in contact with the
ground or not, without additional visual feedback.

determine precisely forces that are applied to the 3D objects. These
methods thus require more complex computations, such as:

• Pre-computation of objects intersection using bounding-boxes
• Additional renderings from orthogonal viewpoints
• Multiple renderings in layered depth images

On the other hand, our contact detection method does not require
additional renderings. It only requires to store a 3D position and
an object identifier per pixel at render time, with thus almost no
overhead.

3. Contact Visualization

3.1. Principle

Our contact visualization filtering solution is built upon the de-
ferred pipeline principle, where additional information is stored in a
texture at render time, on a per-pixel basis. In our solution, we store
(or use†) two pieces of information associated to the object that is
rasterized: its geometric 3D position Ppos (expressed in scene units)
and a unique object identifier Pid . In a subsequent rendering pass,
the complete texture (shaded scene and additional information) is
mapped on a full-screen quad and the filtering process is performed
in an associated fragment shader.

During the filtering stage, for a given pixel P and its associated
data Ppos and Pid , a contact is detected if there exist in its neigh-
borhood at least one pixel P′ for which:{

‖Ppos−P′pos‖ < εpos
Pid 6= P′id

(1)

The value of the scalar εpos depends on the scene and reflects the
artist-driven tolerance below which two objects can be considered
to be in contact. In practice, once a contact is detected for a pixel,
the visual feedback can take different forms. For instance, the input
pixel color can be blended with an artist-defined color in case of
contact and kept unaltered otherwise. The amount of alteration of
the input pixel could also be proportional to the portion of contact-
ing pixels in the neighborhood of the input pixel.

† The geometric position can be inferred from the internal depth buffer
used for z-buffering rather than stored explicitly, thus reducing the memory
footprint of our solution.
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We propose in this paper two different algorithms to detect con-
tacts. They differ mostly from the sampling space they use, and the
algorithm choice is driven by a trade-off between performances and
ease-of-use.

Image-space algorithm. On the one hand, one can consider stan-
dard filtering by sampling the input texture directly to detect con-
tacts (Algorithm 1), by looking at neighboring pixels in a fixed
window search size. The main advantage of this approach is that
regardless of the scene content, the number of samples per pixel
fetched from the input texture remains constant, and the texture
caching behavior is predictable. This leads to high performances
even on very low-end graphics hardware, but may be less user-
friendly than the alternative camera-space algorithm.

Algorithm 1 Contact detection in image space

Input: Textures T∗ storing colors, positions pos and identifiers id.
Input: Parameter Ccol , the contact color
Input: Parameter εpos, the distance threshold (in scene units)
Input: Parameter κ1, the filtering kernel size (in pixels)

1: for all texels P do
2: Read from T∗ the pixel color Pcol
3: Read from T∗ the pixel data Ppos and Pid
4: Initialize the blend factor: α = 0
5: for all samples i within κ1 do
6: Compute the sample texture coordinates
7: Read from T∗ the sample data P′pos and P′id
8: if Pid 6= P′id && ‖Ppos−P′pos‖< εpos then
9: Modify the value of α

10: end if
11: end for
12: Pcol = α ·Ccol +(1−α) ·Pcol
13: end for

Camera-space algorithm. On the other hand, filtering samples
can be defined first in camera-space as 3D offsets to Ppos read from
the input texture(s), that are then projected back in image space to
read corresponding coordinates P′pos and identifier P′id (Algorithm
2). With this method, many different objects far away from the cam-
era will generate almost no contact visualization. This is consistent
with the initial idea where contact visualization helps artists set up
correctly their assets to avoid floating objects or inter-penetrations:
there may be no need to correct a scene with floating objects when
the impact of this error is less than a pixel. However, in case of im-
portant close-ups, this method may lead to texture fetches far away
from the central pixel position, and thus break the texture cache
consistency at runtime. This is because the image size of the filter-
ing kernel in this case depends on the pixels’ 3D coordinates, con-
trary to the image-space filtering method. On the pragmatical side,
current graphics hardware generally have large amounts of texture
caches, so this issue may only occur either on much older hardware,
or with improbable shader parameterization (e.g. using a kernel that
covers the whole image). The kernel of this filter being designed to
fit the underlying geometry, it produces more accurate results and
is more artist-friendly in term of parameterization. The difference
in behavior between both algorithms is illustrated on Figure 5.

Algorithm 2 Contact detection in camera space

Input: Textures T∗ storing colors, positions pos and identifiers id.
Input: Parameter Ccol , the contact color
Input: Parameter εpos, the distance threshold (in scene units)
Input: Parameter κ2, the filtering kernel size (in scene units)

1: for all texels P do
2: Read from T∗ the pixel color Pcol
3: Read from T∗ the pixel data Ppos and Pid
4: Initialize the blend factor: α = 0
5: for all samples i do
6: Compute sample position Spos in camera-space as a 3D

offset of Ppos within the kernel limits κ2
7: Project Spos to get the associated texture coordinates
8: Read from T∗ the sample data P′pos and P′id
9: if Pid 6= P′id && ‖Ppos−P′pos‖< εpos then

10: Modify the value of α

11: end if
12: end for
13: Pcol = α ·Ccol +(1−α) ·Pcol
14: end for

Image Plane Image Plane
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(a) Image-space sampling. Here the sampling space is constant in image
size (blue arrow), and samples in object space can be very far away from
the considered 3D point (orange arrow), thus leading to inconsistent local
geometry inspection.

P

Image Plane Image Plane

P

(b) Camera-space sampling. In that case the size of the sampling search
varies in image space (orange arrow), while it remains constant in object
space (blue arrow), leading to a more more accurate and artist-friendly filter
parameterization.

Figure 5: Behavior difference of the image and camera-based al-
gorithms. Left column: case of objects close to the camera. Right
column: case of objects far from the camera.

3.2. Implementation

During the initial render pass, objects need to store for each pixel
their identifier and position in a dedicated render target. Though 16
bits-per-component (bpc) may be sufficient in general to measure
small geometric distances, it limits the number of object identifiers
to 65536. In production scenes comprising a huge number of ob-
jects, this could be too small. We thus recommend using 32 bpc
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render targets. As for geometric positions, they can be stored ei-
ther explicitly in the same render target using three floating point
values, or they can be inferred in the post-processing filtering pass
using the internal depth buffer used for z-buffering and the camera
intrinsic parameters.

In the final rendering pass, where contacts are searched for
(Equation 1), any sampling strategy should work. However, for per-
formance reasons, we use Poisson-disk samples (defined as offsets
from the central point in the unit disk) rather than say box filter-
ing, so as to keep a constant number of filtering samples regardless
of the filter kernel size (which varies with algorithm and user pa-
rameters). Increasing the kernel size will thus have a much smaller
impact on performance, which may decrease slightly due to texture
cache misses rather than because of an increased number of texture
fetches.

Listing 1 depicts a simple GLSL snippet in which the input pixel
color is blended with an artist-driven color as soon as a contact is
detected in the vicinity of said pixel. In this example, the kernel
size is defined in image space rather than camera space for the sim-
plicity of the exposition.

4. Results and discussion

We integrated our contact visualization solution in Autodesk’s
Maya, within an in-house pre-visualization viewport plug-in. All
the following tests have been performed on a desktop computer
with an NVIDIA GeForce GTX 480. All images are rendered at a
1280×720 definition. Unless otherwise stated, tests have been per-
formed with 32 bpc render targets.

4.1. Performance considerations

First, we measured the overhead of such contact shader. Figure 6
illustrates the rendering time spent (in milliseconds) to render the
images illustrated in Figure 1 (middle and right). The same im-
age was rendered during approximately 30 seconds to provide a
fair amount of sample measures. The three curves correspond to a
shader without contact detection (blue), with detection in image-
space (green) and in camera-space (red). For this image, one can
see that the overhead is similar for both sampling spaces, and ap-
proximately equal to 1 millisecond. This example represents a typi-
cal image, with some background pixels that are not processed (we
do not compute irrelevant contacts on background pixels). In the
worst case, when all pixels are processed, the overhead costs ap-
proximately 1.2 milliseconds. The choice of the sampling space
seems to have a negligible impact on performances.

We also tested the performance impact of the kernel size in the
case of image-based sampling. Figure 7 illustrates the median ren-
dering time (over 30 seconds) for different kernel radii in pixels. We
tested values 0 (no shader), {1..32}, 64, 128 and 256 pixels. Sur-
prisingly, on this kind of hardware, fetching texels far away from
the central one does not seem to impact performances that much.

Finally, we measured the impact of using 16 bpc render targets
instead of 32 bpc (Figure 8). With such buffer precision, the num-
ber of objects that can be discriminated through their object id is
decreased. It should thus be used we scenes with low to medium

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 4.6

 5000  10000  15000  20000  25000  30000  35000

Re
nd

er
 ti

m
e 

(m
s)

Ellapsed time (ms)

Eye Kernel (median = 4.09 ms, st.dev = 0.03 ms)
Img Kernel (median = 4.08 ms, st.dev = 0.03 ms)

No Contacts (median = 3.12 ms, st.dev = 0.04 ms)

Figure 6: Scene render time with contacts computed in image
space, in camera space, or without contacts.
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Figure 7: Median render time vs. kernel size. The rectangular zone
in the center of the graph is a zoom on the first 32 samples.

objects number. Unsurprisingly, the whole rendering time is de-
creased while using 16 bpc render targets. It is also worth noting
that the contacts shader overhead is smaller when reading 16 bits
floating values rather than 32 (approximately 1.3 times faster in this
particular example).

4.2. Limitations

This contact and inter-penetration previsualization solution suffers
from several limitations, which are inherited from the limitations
of any deferred shading solution.

First, contacts or inter-penetrations cannot be visualized on
transparent objects. As a matter of fact, such objects do not write in
the depth buffer and shall not write other pixel data than their own
color. In standard deferred pipelines, transparent objects are gen-
erally drawn after the deferred process has been applied to opaque
objects.

Second, this technique can miss contact detections for some pix-
els both because of the depth map representation of the scene and
the sampling process. Notice however that this technique does not
produces false positives (i.e. it does not detect contacts for pixels
where there isn’t one).
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Figure 8: Render time vs. render targets bit depth, with and without
contact detection.

Some deferred pipeline techniques based on the depth of the pix-
els take advantage of depth-peeling to remove missing information
in the initial depth layer (see for instance [BS09]). In our case, a
contact would be searched for in successive depth layers with in-
creasing depth order. It is worth noting that some previsualization
solutions already implement depth-peeling for high quality trans-
parency rendering, and could thus directly benefit from such en-
hanced depth information to compute contacts more accurately.
However, such peeling solutions have a strong impact on graphics
performances and may not fit the constraints of animation work-
flows, due to the allocation and read-back of many floating-point
frame buffers.
Some contacts can be missed in case of stochastic sampling of the
pixel’s neighborhood. Increasing the number of samples leads to
a decrease of the contact miss rate, at a computation cost roughly
linear with the number of samples. However, this is generally not
an issue, as zones with missed contacts appear as dithered strokes
instead of filled ones.

Finally, our solution relies on per-object identifiers. If different
meshes are merged into a single one, only topological information
on triangle- or quad-level can be inferred. For instance, we can de-
tect in the neighborhood of a pixel if two triangles intersect without
sharing an edge. It would require however more advanced graphics
capabilities, as topology analysis can only be done in geometry or
tessellation shaders, if one expects real-time feedback.

5. Conclusion

The simple technique presented in this paper allows for real-time
visualization of contact and inter-penetration between 3D objects
in CGI images. Thanks to this post-processing approach, there is
no need for inter-objects collision detection in geometric space. As
such, the computational cost of our method is independent of the
complexity of the scene geometry.

Our technique was successfully embedded within Autodesk’s
Maya viewport. As such, artists can build directly 3D assets
and scenes while avoiding undesired lack of contact or inter-
penetration, without any additional costly tool or rendering effect
(e.g. shadows, ambient occlusion, etc.). This initial quality assess-
ment reduces dramatically the number or retakes due for instance

to erroneous lighting, leading to a fair amount of time gain on the
whole production workflow.
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Appendix
1 // Input MRT sampler (color + pos & id)
2 uniform sampler2D inTex[2];
3
4 // Contact-related uniforms
5 uniform float ctMaxDist;
6 uniform float ctKerSize;
7 uniform vec3 ctColor;
8 uniform float ctIntensity;
9

10 // Nb Poisson-disk samples for contacts
11 const int nSamples = 15;
12 // Poisson-disk samples
13 vec2 poisson[15] = vec2[15](
14 vec2(-0.699005, -0.495301), [...]
15 vec2( 0.965083, 0.147416)
16 );
17
18 void displayContacts( inout vec4 inColor )
19 {
20 //----------------------------------------//
21 // Retrieve the fragment’s Id and depth,
22 // and compare to the neighborhood
23 vec2 tcRef = gl_FragCoord.xy - vec2(0.5);
24 vec4 ref = texelFetch( inTex[1], ivec2(tcRef), 0 );
25 float mixCoeff = 0.0;
26
27 for( int i = 0; i < nSamples; i++ )
28 {
29 vec4 sample = texelFetch( inTex[1],
30 ivec2( ctKerSize * poisson[i] + tcRef ), 0 );
31
32 // If sample Id is different from ref. Id
33 // and they are close enough
34 if( ref.w != sample.w &&
35 length( sample.xyz - ref.xyz ) < ctMaxDist )
36
37 mixCoeff = ctIntensity;
38 }
39
40 inColor.xyz = mix( inColor.xyz, ctColor, mixCoeff );
41 }
42
43 void main()
44 {
45 // Read input color, and eventually modify it
46 }

Listing 1: Minimal GLSL snippet used to detect contacts in im-
age space, with 3D positions explicitly stored.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.


