
Compression of Time-Varying Textured Meshes
using Patch Tiling and Image-based Tracking

Jean-Eudes Marvie, Maja Krivokuća, Céline Guede, Julien Ricard, Olivier Mocquard, François-Louis Tariolle
InterDigital INC, Rennes, France

jean-eudes.marvie@interdigital.com, maja.krivokuca@interdigital.com, celine.guede@interdigital.com,
julien.ricard@interdigital.com, olivier.mocquard@interdigital.com, francois-louis.tariolle@interdigital.com

Abstract—This paper presents our answer to the dynamic mesh
compression Call for Proposals (CfP) that was recently launched
by the MPEG 3D Graphics Coding (MPEG-3DGC) group. The
proposed method begins with a per-frame mesh decimation
based on quadric error metrics. The decimated mesh geometry
and topology are then encoded per frame, by using a state-of-
the art static mesh coder (such as Draco, for example). The
associated texture map coordinates (uv) can either also be directly
encoded using the same static mesh coder, or an optional mesh
segmentation into sub-meshes (“patches”) of approximately equal
size is applied. For each patch, a new local uv parameterization
is computed, meaning that the original uv texture coordinates
do not need to be encoded, as the same parameterization is
recomputed by the decoder. The patches are then organised into a
regular grid in a global uv coordinate system, and the input mesh
texture map is reprojected onto the corresponding patch tiles.
Intra-frame reorganisation of the texture tiles can then be applied
in the first frame of each Group of Pictures (GOP), followed by
inter-frame reorganisation for the other frames in the same GOP
based on tile tracking using image-based distance metrics. These
reorganisations improve spatial and temporal correlations in the
reprojected texture maps, allowing these texture maps to be more
efficiently coded by standard 2D video codecs than the original
texture maps. The proposed method shows notable improvements
in rate-distortion performance over the anchor codec used in the
CfP, both for the geometry and colour coding, and for the all-
intra and random-access lossy coding test conditions.

Index Terms—volumetric video, mesh compression, dynamic
meshes, textured meshes, time-varying meshes

I. INTRODUCTION

Volumetric video is one of the newest forms of multimedia
that promises to take the viewer one step closer towards a
more realistic and more immersive viewing experience than the
traditional two-dimensional (2D) video. A volumetric video
consists of a sequence of frames, where each frame is a static
three-dimensional (3D) representation of a real-world object or
scene captured at a different point in time. While a number of
possible 3D representations could be used, nowadays the most
common are 3D point clouds and 3D mesh models. Both of
these representations consist of a set of point (vertex) positions
in 3D space, (x, y, z), which are known as the model’s geom-
etry. Each vertex could optionally have additional attributes
associated with it, most typically (R,G,B) colours. A 3D mesh
additionally contains an explicit definition of the 3D object’s
surface, which comes in the form of connectivity data. The
connectivity is a set of straight edges between the vertices,
which form flat polygons (usually triangles) called faces. The

collection of faces, together with the vertex positions, provides
an approximation of the underlying 3D object’s surface. The
colours or other attributes of a 3D mesh could either be defined
per point, or per face. Colours could also be associated with the
mesh surface by reparameterizing the mesh onto 2D regions
of a plane, then using the corresponding set of parametric
coordinates (called uv coordinates) to map a 2D texture onto
the mesh. The latter is commonly called a textured mesh and
it is what we focus on in this paper.

Regardless of the underlying 3D representation used, vol-
umetric videos are heavy with data and require efficient
compression techniques in order to be usable in practice.
Recently, the 3D Graphics Coding subgroup of the Moving
Picture Experts Group (i.e., MPEG-3DGC) launched a Call for
Proposals (CfP) [1], to address the problem of compressing dy-
namic (time-varying) textured meshes (TVMs) in the context
of volumetric video. The aim of this paper is to describe our
proposed solution to this CfP. While earlier MPEG standards
do exist for coding dynamic 3D meshes [2], these standards
cover only so-called animated meshes, which are sequences of
mesh models (usually computer-generated) where the number
of vertices, the mesh connectivity, and the associated uv
coordinates remain constant, and only the vertex positions
change over time. If the animated meshes contain texture
information, the texture map remains constant over time (i.e.,
there is only one texture frame for the entire mesh sequence).
The dynamic meshes that we are interested in compressing
now can have a variable number of vertices, and therefore a
different connectivity and topology, and different uv texture
coordinates, for each frame. The texture map content for these
meshes is also usually updated at each frame, such that the
colour attributes are a sequence of texture maps. Such meshes
are more representative of real-world captures, where the 3D
model(s) in each frame are generated independently; however,
for this reason, TVMs are also much heavier in terms of
data content than animated meshes. The coding of TVMs
is a challenging problem that started to be addressed in the
research community almost two decades ago [3], [4] (usually
for dense meshes with colours per vertex, or no colours at
all, but not for textured meshes), but is still very much in its
infancy. The most difficult aspect of compressing such data
is the lack of explicit correspondences in the connectivity and
geometry of the mesh models across different frames. Tracking
algorithms that attempt to find such correspondences are often



costly and time-consuming, and therefore not practical to use
for a standalone TVM codec. These instabilities also lead to
unstable texture map layouts, which are difficult to compress
efficiently using a video coder. All of these challenges, plus
the fact that the texture map for TVMs changes at each
frame, unlike the one constant texture map for animated
meshes, means that the results for existing TVM codecs are
still far from the compression rates achievable for constant-
connectivity animated meshes.

In this paper, we propose a new TVM coding solution that
achieves substantially better rate-distortion (R-D) performance
results than the anchor codec used for the MPEG-3DGC
mesh coding CfP [1]. Our solution is based on a per-frame
mesh decimation using the algorithm from [5], followed by
a per-frame encoding of the decimated mesh geometry and
topology by using a state-of-the-art mesh codec such as the
Draco [6] implementation of Edgebreaker [7]. The associated
texture uv coordinates can either also be encoded by Draco,
or an optional mesh segmentation into sub-meshes (“patches”)
can be applied. In the latter case, these patches’ texture uv
coordinates are reparameterized such that they do not need
to be encoded, as the same reparameterization is computed
at the decoder. A texture map reprojection onto the patch
tiles in the new uv coordinate system, followed by intra- and
inter-reorganisation of these texture tiles using image-based
distance metrics, allows an improved spatial and temporal
correlation that enables the reprojected texture maps to be
coded more efficiently by standard 2D video codecs than the
original texture maps.

The rest of this paper is organised as follows. Section II
covers the prior work in TVM compression, Section III
introduces our proposed solution, Section IV presents our key
experimental results, and Section V concludes the paper.

II. RELATED WORK

In some of the earliest work on time-varying mesh com-
pression [3], [8], researchers proposed the use of surface
flattening (or unfolding) techniques for 3D meshes. These
methods cut open a 3D mesh, then project it onto 2D images,
which can be encoded with conventional 2D video coders
such as H.264/AVC [9]. Several other TVM compression
methods [4], [10], [11] are based on the subdivision of 3D
meshes into blocks, to extend the idea of 2D block matching
from conventional 2D video coding to 3D. In [12], [13], sub-
meshes (patches) are used instead of 3D blocks. However,
none of these methods have been demonstrated to work for
textured meshes, but rather for meshes with colours per vertex,
or colourless meshes.

More recently, TVM coding solutions have begun to ap-
pear [14], [15] that are based on the MPEG Video-based
Point Cloud Coding (V-PCC) standard from the V3C frame-
work [16]. However, [14] does not work for textured meshes
either (only for dense meshes with per-vertex colours), and
has also not been demonstrated for sequences of time-varying
meshes; only for a single mesh. The authors also showed
that their method is usually outperformed by Draco [6]. The

method in [15] works on both, meshes with per-vertex colours
and textured meshes. In [15], each vertex position of a 3D
mesh is projected onto a pixel position in a 2D patch image,
similarly to how 3D point clouds are coded with V-PCC, but
additionally the surface of the 3D mesh is also projected onto
the 2D patch projection plane by using rasterization. This
produces a dense image representing the mesh connectivity,
which is suitable for video coding. Occupancy, geometry,
and attributes are encoded as usual by V-PCC. However,
similarly to [14], the method in [15] has also been shown to
be outperformed by Draco for geometry compression, while
for colour compression the performance is comparable (or in
some cases a little better) to the case when the original texture
map is encoded using HEVC [17] on top of a reconstructed
geometry using Draco.

It is therefore clear that, in the limited work that currently
exists on TVM compression, there is still no suitable solution
for the efficient compression of time-varying textured meshes.
The key component of the solution that we propose in this
paper, which is different to existing TVM compression al-
gorithms, is a method to stabilise the input texture atlases
spatially within a frame and also temporally across frames,
and thereby allow the resulting texture maps to be coded
efficiently with existing 2D video coders. The heart of our
codec is illustrated in Fig. 1. More details on the proposed
method are explained in the following section.

Fig. 1. Example of resulting texture frames after our processes from
Sections III-A2 to III-A4 are applied on the “basketball” mesh sequence [1].

III. PROPOSED CODEC FOR TIME-VARYING MESHES

Figs. 2 and 3 depict the proposed encoder and decoder
architectures. The key processing blocks are described in the
sub-sections below.

A. Encoder

1) Mesh simplification: The encoder begins with a mesh
simplification (decimation), to reduce the number of triangles
in the input mesh but without visibly degrading the mesh



Fig. 2. Proposed encoder architecture.

Fig. 3. Proposed decoder architecture.

quality. A number of possible decimation methods could
be used, but our current implementation is based on the
well-known algorithm from Garland and Heckbert [5]. The
simplified mesh geometry, connectivity, and texture map uv
coordinates can then all be encoded directly by a state-of-the
art mesh encoder such as Draco [6], or only the geometry
and connectivity are coded by Draco but the uv coordinates
are not encoded at all. In the latter case, a segmentation into
sub-meshes (“patches”) of approximately equal size is the next
step, explained below.

2) Mesh segmentation into patches: To obtain the mesh
patches, we use a similar principle to [18], except that the

“seeds” are chosen differently in our work. The seeds are
representative points that are used to cluster mesh faces to
their nearest seed, such that each seed becomes one sub-mesh
(patch). In [18], each new seed is chosen so as to maximise the
average distance to all the existing seeds in the same connected
component. However, this does not work well for our proposed
system, as it leads to non-uniform patches, but we wish to
have approximately uniform patches in order to make patch
reorganisation and tracking easier. Therefore, in our solution,
each new seed is added to maximise the minimal distance
(using Dijkstra’s algorithm [19]) to all the existing seeds in
the same connected component. The first seed is chosen by



taking the triangle whose centre of mass is nearest to the
mesh’s centre of mass. An optional refinement step is also
possible, where we select, for each patch, a new seed amongst
its faces, which is closest to the centre of mass of the patch.
However, we found that even without this refinement, we can
already obtain good results with a lower computational time
complexity; therefore, the results in Section IV do not include
this refinement step.

3) Patch uv reparameterization: Once the patches are gen-
erated, we compute for each patch a new local uv parame-
terization. The advantage of this step is that the original uv
texture coordinates do not need to be encoded, as the same
reparameterization can be computed locally at the decoder. In
our implementation, the new uv coordinates for each patch
are generated using the Boundary First Flattening (BFF)
algorithm and software [20] (but this could also be replaced
by other algorithms, e.g., [21], [22]). We obtain for each
patch a uv parameterization with uv coordinates set between
0.0 and 1.0 in each axis direction (u and v). Next, all the
reparameterized patches are organised into a regular grid in a
global uv coordinate system, by using scaling and translation
of the local patch uv coordinates. The input mesh texture map
is then reprojected onto the corresponding patch tiles (e.g.,
see Fig. 1 (Left)). Two paths are possible for the texture
reprojection: either reprojecting the textures by using the uv
coordinates of the decimated (and decompressed) mesh, or
performing a colour transfer (red line in Fig. 2) between the
original input mesh and the decompressed (decimated) mesh.
To organise the patches in the global coordinate system, we
simply take the patches in the order that they are generated
by the segmentation process. The order of the patches is
not critical here, since the corresponding texture tiles will
be reorganised later (see Section III-A4). Also note that the
BFF uv generator can be executed with different modes (e.g.,
target patch shapes). Our method works with each mode, but
since the “cone” mode generates the lowest distortions in the
reprojections, we use this one for our CfP response.

4) Intra- and inter-frame texture tile reorganisation: Look-
ing at the example in Fig. 1 (Left), we can see that the empty
regions (black areas) between patches introduce strong signal
discontinuities at the patch boundaries. Even when patches are
not separated by empty regions, the transition from one patch
to another may present strong colour or luminance differences.
A common solution to reduce such sharp signal transitions is to
apply some padding to fill the empty areas with data that suits
the encoder, e.g., by smoothing out the transitions between
patches. In our work, we use the “harmonic” padding from
the MPEG V-PCC standard [16]. However, this padding alone
is not sufficient. In Fig. 1, we can see that the texture tiles
are also not necessarily arranged in a way where they have
a (strong) coherence with their neighbouring tiles. Therefore,
before applying the padding, we can first perform an intra-
frame tile reorganisation to minimise the signal discontinuities
between neighbouring tiles. This leads to padding gradients of
smaller amplitude, thereby improving the compression of the
texture map by the 2D video coder that relies on inter-block

predictions. The intra-frame reorganisation of the texture tiles
(corresponding to the mesh patches in the global uv coordinate
system, described in Section III-A3) is applied in the first
frame of each Group of Pictures (GOP). It is based on scanning
the grid of tiles from the bottom left corner to the top right
corner, and at each iteration searching amongst the remaining
unorganised texture tiles to find the tile that would minimise
the inter-tile transitions (in terms of mean squared error
(MSE)) with the current tile and its immediate neighbours (see
Fig. 4). The MSE between two tiles is measured between their
reference pixel arrays, not the full tiles. A reference pixel array
is computed for each side of a tile by using a pixel marching
(Fig. 5 (Left)), starting from the sides of the tile and collecting
for each ray the colour value of the first encountered pixel that
is occupied. When no pixel is found on a complete traversal,
we use a black pixel in the associated pixel of the reference
pixel array (see Fig. 5 (Right)). Once the four reference pixel
arrays are generated for each tile (one per side, as in Fig. 5
(Right)), we can compare two tiles by any of their sides using
MSE on those pixel arrays. When comparing one tile to two
other tiles at the same time, as for step 4 in Fig. 4, we use
the sum of the two MSEs.

Fig. 4. Intra-frame texture tile reorganisation process.

Fig. 5. Generating the reference pixel arrays (Right) for the four sides of a
tile (Left) using simple pixel marching (Left).



Following the intra-frame tile reorganisation, we can also
optionally apply an inter-frame tile reorganisation, to improve
temporal correlations in the reprojected texture maps. The
inter-frame reorganisation is applied in each GOP based on
(and constrained by) the intra-frame reorganisation of the first
frame in the same GOP. The tiles in each subsequent frame in
the same GOP are compared using MSE with the tiles of the
previous frame in the same GOP (this time computing MSE
between full tiles, not between their reference pixel arrays),
and the best-matching tile is moved to same location in the tile
grid as its match in the previous frame. Rotations of tiles could
also be applied during the MSE tests, to find the best-matching
tile, but this has not yet been implemented. At the end of
this process, we obtain a set of meshes whose topology is left
unchanged, but the uv coordinates are changed to parameterize
a set of stabilised tiled texture atlases that are more suitable
for video-based compression than the original texture atlases.
Fig. 1 (Right) illustrates an example of animated texture
frames once stabilised with our solution and padded. The intra-
and inter-frame tile reorganisation is tracked by a tile transform
table, which is stored as metadata in the bitstream that is sent
to the decoder.

5) Bitstream encoding: Whether or not the mesh segmen-
tation and associated optional processes (described above) are
applied, the mesh geometry and connectivity are encoded
per frame using Draco [6] (we use a modified implementa-
tion, which skips the quantization operation). For the texture
maps, these are first converted to the YUV colour space,
then HDRTools [23] and the HM encoder [17] are used to
encode the texture maps into an HEVC bitstream. All-intra,
random-access and even lossless modes can be used for the
HEVC encoding. The uv texture coordinates are only explicitly
encoded if no mesh segmentation is used (see Section III-A1).

B. Decoder

Whether or not the input mesh is segmented into patches
at the encoder, the texture maps are decoded using the HM
decoder [17] and converted back into PNG image format using
HDRTools [23]. For the decoding of the mesh geometry and
connectivity, the first step is to apply the Draco decoder [6].
If no mesh segmentation was used at the encoder, this Draco
decoding will directly produce the decoded mesh geometry,
connectivity, and uv texture coordinates. If mesh segmentation
was used, the Draco decoding will produce the geometry and
connectivity only. In the latter case, the decoded mesh must
then be segmented into patches and reparameterized into a new
uv coordinate system in the same way as at the encoder (see
Sections III-A2 and III-A3). If intra- and/or inter-frame texture
tile reorganisation was performed at the encoder, at the decoder
the tile reorganisation table from the received metadata must
be used to transform the regenerated patch uv coordinates so
that they correctly dereference the tiles that were moved during
the reorganisation steps at the encoder. The decoding algorithm
generates uv coordinates in floating point values, which can be
optionally quantized (this was a requirement for the CfP [1]).

IV. EXPERIMENTAL RESULTS

The experimental results that we present in this section are
based on the mesh test data, error metrics, and test conditions
described in the mesh coding CfP [1]. In Table I, we provide
results for the lossy all-intra (AI) test condition (“C1” in [1])
and the lossy random-access (RA) test condition (“C2” in [1]).
These results show the Bjøntegaard-Delta (BD) rate [24]
between our proposed solution and the anchor codec used for
the CfP [1], averaged across all the mesh sequences in each
of the three dataset categories chosen for the CfP (explained
in [1]). A negative BD-Rate percentage (green cells in Table I),
e.g., −X%, indicates that the proposed codec has, on average,
X% lower bitrate than the anchor over the target bitrate range
(see [1] for details), for the same mesh reconstruction quality.
The reconstruction quality is measured as the Peak Signal to
Noise Ratio (PSNR), using several different error metrics as
indicated in the columns of Table I – see [1] for details. A
positive BD-Rate percentage (pink cells in Table I) indicates
a higher average bitrate than the anchor. We see that for both
the mesh geometry (D1, D2, and Geo. columns) and the mesh
colour (Luma (Y) and Chroma (Cb and Cr)), the proposed
solution generally outperforms the anchor by a significant
amount. Note that these results correspond to the version of
the proposed codec where the mesh segmentation and related
optional procedures (see Section III-A) have been applied.
In Fig. 6, we also present some example R-D results for
one of the mesh sequences used in the CfP [1], where our
proposed solution is compared against the other (anonymous)
proponents that responded to the CfP. In Fig. 6, our proposed
solution is both “P14” and “P20”. P14 corresponds to the
case where the source for the texture attribute transfer in our
encoder is the decimated mesh (see Section III-A3), and P20
is when the original input mesh is the source. Note that the
results in Table I correspond to P20 averaged across different
datasets. The results in Fig. 6 are representative of our results
for most of the mesh sequences used for the CfP. Here we
see that our proposed solution is generally in the top two of
the submitted solutions, both for geometry and colour coding,
and significantly outperforms the anchor codec for most of the
target bitrates.

TABLE I
LOSSY GEOMETRY AND LOSSY COLOUR CODING RESULTS, USING TEST
CONDITIONS: (TOP) C1: ALL-INTRA; (BOTTOM) C2: RANDOM-ACCESS

Point cloud-based Image-based
BD-Rate (%) BD-Rate (%)

C1 (AI) D1 D2 Y Cb Cr Geo. Y
Cat1-A avg. -40.8 -43.7 -15.6 -15.5 -14.5 -46.7 -20.8
Cat1-B avg. -0.9 -16.3 -34.6 -41.0 -32.8 2.1 -32.4
Cat1-C avg. -38.7 -38.3 -56.3 -69.9 -61.7 -41.8 -55.9
Overall avg. -29.8 -34.2 -40.7 -49.1 -42.7 -32.0 -41.3

C2 (RA)
Cat1-A avg. -36.8 -39.8 -21.7 -26.9 -26.9 -43.2 -25.2
Cat1-B avg. 9.1 -14.0 -43.6 -50.5 -44.6 9.6 -37.5
Cat1-C avg. -41.9 -42.0 -29.0 -1.2 2.7 -44.5 -34.2
Overall avg. -27.8 -34.5 -30.8 -19.9 -16.5 -30.7 -32.8



Fig. 6. Example R-D results for mesh sequence “Mitch” [1], for C1 (AI), using the point cloud-based PSNR (see [1]) for geometry (D2) and luma (Y in
Table I). Our proposal is both “P14” and “P20”.

V. CONCLUSION

In this paper, we presented a new method for compressing
time-varying textured 3D mesh sequences, in response to
the recent Call for Proposals [1] from the MPEG-3DGC
group. Compared to the anchor codec used in the CfP [1],
our proposal demonstrates notable rate-distortion performance
improvements, for the all-intra and random-access test condi-
tions, and for lossy geometry and lossy colour coding. Our
solution also outperforms most other competing solutions that
were submitted as responses to the CfP. Further improvements
in R-D performance for our proposed method are still possible
with better tuning and combinations of different coding param-
eters. In terms of algorithmic improvements, the key future
work that we envision could involve: temporal patch stabilisa-
tion through temporally constrained mesh segmentation (which
would lead to more efficient texture tile tracking), better inter-
tile tracking by implementing tile rotations or other rigid
transformations, and perhaps most importantly an extension of
our algorithms to handle temporal mesh compression, which
would result in significant gains in rate-distortion performance.

ACKNOWLEDGMENT

The authors would like to thank their colleagues at InterDig-
ital and in the MPEG-3DGC group, for valuable discussions
that led to the formulation of this work. We also thank the
reviewers of this paper for their constructive feedback.

REFERENCES

[1] ISO/IEC JTC 1/SC 29/WG 7, CfP for Dynamic Mesh Coding, Oct. 2021.
[2] ISO/IEC JTC 1/SC 29, Information technology — Coding of audio-

visual objects — Part 16: Animation Framework eXtension (AFX), 2011.
[Online]. Available: https://www.iso.org/standard/57367.html?browse=tc

[3] H. Habe, Y. Katsura, and T. Matsuyama, “Skin-off: representation and
compression scheme for 3d video,” in Picture Coding Symposium, 2004,
pp. 301–306.

[4] S.-R. Han, T. Yamasaki, and K. Aizawa, “3d video compression based on
extended block matching algorithm,” in 2006 International Conference
on Image Processing. IEEE, 2006, pp. 525–528.

[5] M. Garland and P. S. Heckbert, “Surface simplification using quadric er-
ror metrics,” in Proceedings of the 24th annual conference on Computer
graphics and interactive techniques, 1997, pp. 209–216.

[6] Google, “Draco 3d data compression.” [Online]. Available:
https://google.github.io/draco/

[7] J. Rossignac, “Edgebreaker: Connectivity compression for triangle
meshes,” IEEE transactions on visualization and computer graphics,
vol. 5, no. 1, pp. 47–61, 1999.

[8] J. Hou, L.-P. Chau, Y. He, and N. Magnenat-Thalmann, “A novel
compression framework for 3d time-varying meshes,” in 2014 IEEE
International Symposium on Circuits and Systems (ISCAS), 2014, pp.
2161–2164.

[9] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview
of the h.264/avc video coding standard,” IEEE Transactions on circuits
and systems for video technology, vol. 13, no. 7, pp. 560–576, 2003.

[10] S.-R. Han, T. Yamasaki, and K. Aizawa, “Time-varying mesh compres-
sion using an extended block matching algorithm,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 17, no. 11, pp. 1506–
1518, 2007.

[11] S. R. Han, T. Yamasaki, and K. Aizawa, “Geometry compression for
time-varying meshes using coarse and fine levels of quantization and
run-length encoding,” in International Conference on Image Processing,
11 2008, pp. 1045 – 1048.

[12] T. Yamasaki and K. Aizawa, “Patch-based compression for time-varying
meshes,” in 2010 IEEE International conference on image processing.
IEEE, 2010, pp. 3433–3436.

[13] L. Yamasaki and K. Aizawa, “Bit allocation of vertices and colors for
patch-based coding in time-varying meshes,” in 28th Picture Coding
Symposium, 2010, pp. 162–165.

[14] E. Faramarzi, R. Joshi, and M. Budagavi, “Mesh coding extensions
to mpeg-i v-pcc,” in 2020 IEEE 22nd International Workshop on
Multimedia Signal Processing (MMSP), 2020, pp. 1–5.

[15] D. B. Graziosi, “Video-based dynamic mesh coding,” in 2021 IEEE
International Conference on Image Processing (ICIP). IEEE, 2021,
pp. 3133–3137.

[16] ISO/IEC JTC 1/SC 29, Information technology — Coded representation
of immersive media — Part 5: Visual volumetric video-based coding
(V3C) and video-based point cloud compression (V-PCC), 2021.
[Online]. Available: https://www.iso.org/standard/73025.html

[17] Z. M. Miličević and Z. S. Bojković, “Performance of high efficiency
video coding (hevc) hm-16.6 encoder,” in 2015 23rd Telecommunica-
tions Forum Telfor (TELFOR). IEEE, 2015, pp. 712–715.

[18] S. Shlafman, A. Tal, and S. Katz, “Metamorphosis of polyhedral surfaces
using decomposition,” in Computer graphics forum, vol. 21, no. 3.
Wiley Online Library, 2002, pp. 219–228.

[19] E. W. Dijkstra et al., “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[20] R. Sawhney and K. Crane, “Boundary first flattening,” ACM Transac-
tions on Graphics (ToG), vol. 37, no. 1, pp. 1–14, 2017.

[21] S. Yoshizawa, A. Belyaev, and H.-P. Seidel, “A fast and simple stretch-
minimizing mesh parameterization,” in Proceedings Shape Modeling
Applications, 2004. IEEE, 2004, pp. 200–208.

[22] B. Lévy, S. Petitjean, N. Ray, and J. Maillot, “Least squares conformal
maps for automatic texture atlas generation,” ACM transactions on
graphics (TOG), vol. 21, no. 3, pp. 362–371, 2002.

[23] “Hdrtools.” [Online]. Available: https://gitlab.com/standards/HDRTools
[24] G. Bjøntegaard, “Calculation of average psnr differences between rd-

curves,” VCEG-M33, 2001.


