
CHAPTER

1Coding of dynamic 3D
meshes

Jean-Eudes Marviea, Maja Krivokućaa, and Danillo Graziosib
aInterDigital INC., bSony Corporation of America

ABSTRACT
This chapter presents the state-of-the-art in the coding (or compression) of dynamic 3D mesh
models. Section 1.1 introduces the motivations behind using 3D meshes for volumetric video.
In Section 1.2, some fundamental mesh concepts are explained, which are required in order to
understand the state-of-the-art that follows. Section 1.3 briefly revisits the topic of static mesh
compression, while sections 1.4 and 1.5 provide an extensive review of the state-of-the-art
in dynamic mesh compression. Finally, Section 1.6 concludes this chapter and offers some
opinions on potential future directions of dynamic mesh compression.

1.1 Introduction
When it comes to volumetric video coding (i.e., the compression of three-dimensional
(3D) videos obtained from real-life captures of moving subjects), we often see solu-
tions working on point clouds or voxel data, as discussed in previous chapters. This
is due to the fact that the existing devices that are available to capture real-life ani-
mated subjects are based on discrete sensors (e.g., cameras, depth sensors, etc.), so a
point-based 3D representation is a natural output of such sensors. The signal coming
from the acquisition-reconstruction step of these sensors therefore offers a convenient
trade-off between the quality of the captured subject (in terms of sufficiently represent-
ing its surface details and photometry) and the reconstruction cost, which is relatively
low compared to other 3D representations that require additional reconstruction steps.
Therefore, using the reconstructed signal in this form for its consumption can be an
effective approach in the various use cases of volumetric videos.

However, 3D point clouds are not so convenient to render, especially when tar-
geting real-time playback by leveraging graphics hardware. Indeed, obtaining high
quality renders of point clouds requires accurate splatting methods [1] to produce con-
tinuous surface projections of the model (which is originally discrete) without holes
between the rendered points. Splatting usually requires additional pre-generated in-
formation per point, such as the splat radius or stretch vector, normal vector, or other
information, which massively increases the cost of storage. Some point cloud render-
ing approaches also make use of hierarchical representations such as octrees to find

1



2 CHAPTER 1 Coding of dynamic 3D meshes

point neighborhoods and compute accurate splat stretches at runtime. This reduces
the required additional volume of data, but increases the processing complexity for
rendering. In the case of voxel data, which are equivalent to point clouds aligned
within a 3D grid (where each grid element is set to 1 to express the presence of a
point or 0 otherwise), rendering can require less additional data than for raw point
clouds, thanks to the implicit knowledge of point neighborhoods. However, such
grid structures require the storage of points that are regularly organized, and high-
resolution grids are needed to accurately represent models that contain many fine
(high-frequency) geometric details. Here again, some hierarchical data structures
such as octrees can be used to lower the data volume, but at the cost of complexity at
rendering.

Another approach for 3D object representation is to reconstruct a surface made
of triangles, by connecting neighboring points from point clouds (using a graph
relationship - see Section 1.2), and to encode this additional data, called the mesh
connectivity, which is used to describe the topology of the 3D mesh model.1 The
ensemble of point positions and triangles (described by indices into the array of point
positions) is called a mesh. The so-connected points are called the vertices of the
mesh, and any colors associated with the points are called simply the vertex colors, or
more generally the attributes of the points. In the context of volumetric video, where
real-life captures are used and not computer-generated 3D models, the raw point
clouds are usually very dense. Hence, the meshes obtained from such point clouds
are also very dense. Throughout this chapter, we will refer to such meshes as dense
meshes with color per vertex. These meshes can also be generated from voxel data by
using surface reconstruction algorithms such as marching cubes [2]. In both cases, the
mesh is then used at rendering to produce continuous 2D surfaces in the final 2D image
that will be displayed on screen for the user, by performing the projection of inter-
connected triangles instead of the set of points. Colors per vertex are usually linearly
interpolated to produce colors inside the triangle projections. The projection of these
triangles can be easily performed by using ray-tracing or rasterization algorithms.
Even though recent 3D graphics hardware is able to execute both of these methods
in real-time, the most widely used one is rasterization. By leveraging such modern
graphics hardware, which is optimized to work with triangle meshes, it is very easy
to render 3D meshes comprising thousands of triangles in real time at 30 frames per
second, even on mobile phones. Another strong advantage of using mesh models
is the possibility to zoom in at will on the mesh without introducing holes in the
projected (rendered) version of the mesh. There also exist many multi-resolution
representations of meshes, permitting to adapt the quality on demand at the rendering
stage. Meshes are also very convenient to reconstruct normal vectors of the 3D object
surface on the fly, whereas point clouds require complex neighborhood searches to
do so. In contrast to point clouds, renderers can easily apply lighting to mesh models
by using shaders, and generate shadows on and from the meshes, which is important

1Note that many different connectivities can be used to describe the same surface topology, as long as the
genus of the mesh does not change (see Section 1.2.6).



1.1 Introduction 3

for Virtual Reality (VR) and Augmented Reality (AR) applications. More generally,
meshes can also be used to model watertight surfaces, which is a useful property for
physics simulations. Furthermore, collisions are easy to compute for meshes, which
is very convenient for interactions in AR, VR, and game environments (game engines
mostly use textured mesh representations - explained in the following paragraph).

Even though dense meshes are very good for rendering the original dense signal
(captured 3D object) while preserving the captured signal quality, the cost of storage
for the vertex positions and connectivity is non-negligible, and such meshes can
quickly saturate the renderer with many millions of triangles per second. Preserving
such high-resolution models can be of interest in some cases, for instance in the
scientific visualization context to render very fine geometric details coming from
physics simulations. However, such high geometric precision is usually not needed
in most use cases of volumetric videos, such as telepresence or integration within
VR or AR environments. In these latter use cases, the geometric precision can be
lower, while the photometric precision (the color details, such as the skin pores)
must be preserved. Therefore, most industrial volumetric video captures today use
textured mesh representations instead of dense meshes with color per vertex for the
3D content representation. In the case of textured meshes, the dense mesh is also
usually simplified - that is, the original mesh surface is approximated by decimating it
to obtain a lower-resolution mesh with fewer triangles, which represents the original
surface by piecewise linear approximation. The vertex colors of the dense mesh
are also projected into a texture map made of one or several 2D images. Some
mapping coordinates, usually noted 𝑢𝑣, are assigned to the vertices of the simplified
mesh in order to associate the surface of its triangles to different parts of the texture
map. At rendering time, the simplified mesh with 𝑢𝑣 coordinates and its associated
texture map are used to fill the projected triangles with highly detailed photometry
extracted from the texture map. This textured mesh representation presents many
advantages: for instance, graphics hardware can easily handle meshes with texture
maps up to 4 million pixels with good quality filtering using mipmapping [3]. The
mesh resolution can be set appropriately (at the production or encoding stage) to a
desired resolution, without introducing heavy distortions at the photometric level. In
terms of compression, the encoding of the image texture can leverage classical 2D
image coding schemes, such as PNG (lossless) or JPEG (lossy). Moreover, texture
map sequences can be encoded using existing 2D video compression schemes, such
as HEVC or VVC. For all these reasons, and many others such as easy editing, the
textured mesh is the de facto representation for 3D models. All of these advantages
can also be leveraged in the context of volumetric video.

Historically, before the recent trend of sensor-based acquisition of animated sub-
jects, the only animated meshes that were available were purely synthetic ones, pro-
duced using 3D modeling software and eventually human pose scan and motion
capture, mostly by the Gaming, Visual Effects (VFX), and animated movies indus-
tries. Such 3D content, from the Computer-Generated Image (CGI) field, is slightly
(but importantly) different from real-life acquisitions. CGI sequences are generally
made of a topology, as well as a texture map and 𝑢𝑣 coordinates, that are common to



4 CHAPTER 1 Coding of dynamic 3D meshes

all the frames of the sequence (i.e., static topology, texture map, and 𝑢𝑣s), with only
the vertex positions evolving over time. These mesh sequences with constant connec-
tivity are commonly called Animated Meshes (AMs). In contrast, sensor-captured 3D
sequences are usually made up of positions, topologies, vertex 𝑢𝑣s and texture maps
that can all vary for each frame. These mesh sequences with variable connectivity
are commonly called Time-Varying Meshes (TVMs). Note that with TVMs, even the
number of vertices can vary at each frame, which makes those meshes even more
challenging to compress.

The rest of this chapter is organized as follows. After an introduction to some
important mesh fundamental concepts in Section 1.2, we present a review of ex-
isting techniques for static mesh compression in Section 1.3. We then explain, in
Section 1.4, how mesh sequences with variable connectivity (i.e. TVMs) can be
converted into mesh sub-sequences with constant connectivity (i.e. sub-sequences
of AMs) through tracking and re-meshing, or directly constructed as sub-sequences
of AMs. We review, in this same section, the different AM compression methods
currently existing in the literature, as well as those that have been standardized by
international standards organizations. We finally present the existing methods for the
coding of TVMs (without any tracking or pre-processing for conversion to AMs) in
Section 1.5. Section 1.6 concludes the chapter. In Figure 1.1, we summarize the
different publications related to the compression of AMs and TVMs, in the taxonomy
that will be used to present these methods in this chapter.

FIGURE 1.1

A taxonomy of dynamic 3D mesh compression techniques.



1.2 Mesh Fundamentals 5

FIGURE 1.2

(a) Triangle mesh representation of the Stanford Bunny; (b) Zoomed-in region of the
Bunny’s head from (a), to show the triangular faces more clearly.

1.2 Mesh Fundamentals
A 3D polygonal mesh model (sometimes also referred to as a surface mesh, as it
explicitly defines a 3D object’s surface but not its interior volume) consists of a set
of planar polygons that are defined by three types of elements: vertices, edges, and
faces (or facets). The vertices constitute a set of points in 3D Euclidean space R3,
which are defined by their (𝑥, 𝑦, 𝑧) coordinate values, similarly to the point cloud
representation. These vertices are linked by straight edges to form polygonal faces.
The faces are most commonly triangles, but they can also be other simple convex
polygons, e.g., quadrilaterals. Each vertex or face of a mesh may also have additional
attributes associated with it. These attributes are most commonly (R, G, B) colours
(or textures), but there could also be surface normals or other per-vertex or per-
face attributes. An example of a triangular surface mesh is shown in Figure 1.2.
Due to the planarity of the mesh faces, a polygonal mesh can only approximate a
curved (smooth) surface, and a more accurate approximation of this surface can be
achieved by increasing the density of vertices and faces in (the corresponding region
of) the mesh. Therefore, obtaining an increasingly more accurate representation of
a smooth surface using a polygonal mesh can easily require a very large amount of
data. This is why efficient mesh compression algorithms are crucial to enable the
use, storage, and distribution of 3D mesh models. On the other hand, since modern
3D graphics hardware is optimized to deal with triangle mesh representations, such
meshes are relatively easy to render and manipulate. Triangle meshes are also easily
derived from other surface representations, which makes them a very flexible and
portable model type [4]. Another reason for the popularity of triangle meshes (and



6 CHAPTER 1 Coding of dynamic 3D meshes

polygonal meshes in general) is that they are capable of modeling any complex object
of arbitrary topology (provided that there is enough computer memory available). For
these reasons, the vast majority of 3D models created and used today are triangular
surface meshes.

In the sub-sections below, we introduce some fundamental concepts that are
necessary in order to more fully understand 3D mesh models and therefore the work
on mesh compression that will be presented in later sections in this chapter. Note that
the material in the following sub-sections is largely based on the work in [5].

1.2.1 Manifold vs Non-Manifold Meshes
A 3D mesh, being a boundary (or shell) representation of a solid three-dimensional
object, can be viewed as a two-dimensional surface embedded in R3. The mesh can
then be characterized as a 2-manifold (or simply manifold) if every point on its surface
has a neighbourhood that is homeomorphic to an open disc ofR2. Two objects are said
to be homeomorphic if one of the objects can be stretched or bent, without tearing,
to form the other object. Intuitively, this means that, at every point on the surface of
a 2-manifold, the surface locally looks like the 2D plane. This implies that one edge
must be shared by only two faces and not more, and each vertex must have only one
ring of connected faces around it. Thus for each vertex, all the faces incident to this
vertex must form a closed fan (or disc). Figure 1.3 shows a 2D example of such a
closed fan (or disc-shaped) neighbourhood, along with two examples of non-manifold
mesh connectivities.

FIGURE 1.3

Examples of manifold and non-manifold mesh connectivities: (a) Manifold (notice the
disc-shaped neighbourhood around the central, blue vertex); (b) Non-manifold, since
the neighbourhood around the central vertex is not a closed fan; (c) Non-manifold,
since the edge in red is shared by 3 faces, not 2.

1.2.2 Meshes With and Without Boundaries
It is possible for a 3D mesh to have one or more boundaries, so that it represents
an open instead of a closed mesh. In this case, the mesh can be said to be a
manifold with boundary if every point on the boundary has a neighbourhood that is
homeomorphic to a half-disc in R2, while all the points that are not on the boundary



1.2 Mesh Fundamentals 7

have neighbourhoods that are homeomorphic to an open disc (as explained in section
1.2.1, above). A boundary edge is incident to only one face instead of two. For a
vertex on the boundary, all the faces incident to this vertex thus form an open fan
instead of a closed one. Figure 1.4 illustrates an example of an open fan (or half-disc)
neighbourhood around a vertex, and it shows an example of a manifold mesh with
and without boundaries.

FIGURE 1.4

(a) Example of a half-disc neighbourhood around a vertex (blue) on the boundary of a
mesh – the boundary edges are marked in red; (b) Example of a mesh without bound-
aries (i.e., a closed mesh); (c) Example of a mesh with boundaries (i.e., an open mesh).

1.2.3 Mesh Genus
For a manifold mesh, we can also define its genus. The genus is the number of
"handles" that this mesh has. For example, the Torus mesh in Figure 1.5(b) has a
genus of 1, and the Eight mesh in Figure 1.5(c) has a genus of 2. A mesh that has
no handles (i.e., a genus of 0) and no boundary edges is called a simple mesh, e.g.,
see Figure 1.5(a). A simple mesh is topologically equivalent to a sphere, i.e., it is
homeomorphic (see Section 1.2.1) to a sphere, as it can be moulded into the shape of
a sphere without tearing the mesh’s surface.

FIGURE 1.5

Examples of meshes with different topologies: (a) Genus 0; (b) Genus 1; (c) Genus 2.



8 CHAPTER 1 Coding of dynamic 3D meshes

1.2.4 Types of Connectivity in a Mesh
We can define the vertex degree (or valence) for each vertex of a mesh, as the number
of edges incident to that vertex. We say that a polygon mesh has a regular connectivity
if all of its vertices have the same degree (typically 6 for a triangle mesh); an irregular
connectivity if the vertices have varying degrees; and a semi-regular connectivity if
all of the vertices have a regular connectivity except for a few "extraordinary" vertices,
which can have an irregular connectivity. Figure 1.6 shows some examples of regular,
irregular, and semi-regular connectivities for a triangular mesh model (note that these
examples are shown in 2D for the sake of simplicity, so the vertices on the boundaries
appear as if they have fewer edges connected to them than they actually do).

Most 3D mesh models in practice have an irregular connectivity, but they are
sometimes remeshed to obtain a regular or semi-regular connectivity in order to
facilitate mesh compression.

FIGURE 1.6

Examples of different connectivity types for a triangular mesh: (a) Regular connectivity;
(b) Irregular connectivity; (c) Semi-regular connectivity (the “extraordinary” vertices are
shown in yellow here, while the vertices with regular connectivity are shown in white).

1.2.5 Representing a Mesh as a Graph
The connectivity of a mesh can be represented as a planar graph [6] 𝐺 = (𝑉, 𝐸),
where 𝑉 denotes the set of mesh vertices and 𝐸 denotes the set of edges making up
the mesh. Each node of the graph represents one vertex, and the links between the
different nodes represent the edges that connect these vertices together. In the simplest
(and most convenient) case, the connectivity graph is simple. This means that: (i) the
links between the different nodes are undirected (i.e., the edges have no orientation),
(ii) there are no loops around any node (i.e., each edge connects two different vertices,
not any one vertex to itself), (iii) there are no multiple links between any pair of nodes
(i.e., there can only be one edge connecting any given pair of vertices), and (iv) the
graph links are unweighted (i.e., the edges have no weights associated with them,
as they are all considered equally important). Figure 1.7 illustrates an example of
a simple graph with five nodes, and two examples of non-simple graphs: one with
multiple edges, and one with loops. In practice, non-simple graphs could result in



1.2 Mesh Fundamentals 9

degenerate mesh models, e.g., a loop around a vertex (such as in Figure 1.7(c)) would
mean that the edge there is not a straight line (but all edges must be straight lines in
a polygonal mesh), and multiple edges between vertices (such as in Figure 1.7(b))
would create degenerate polygons as the extra edge would just represent a line segment
rather than a polygon.

Unfortunately, in practice, particularly for meshes generated from scans of real
objects (such as in the case of Time-Varying Meshes, covered in Section 1.5), the pro-
duced mesh models rarely have simple connectivity, and sometimes must be "cleaned
up" prior to being processed.

FIGURE 1.7

(a) Example of a simple graph; (b) Example of a non-simple graph with multiple edges
between two nodes (the extra edge is shown in red); (c) Example of a non-simple graph
with a self-loop around one node (shown in red).

A mesh represented as a graph may also have one or more connected components.
Connected components are essentially sub-meshes, which are disconnected from each
other, but are used together to describe a 3D object or scene.

1.2.6 Euler-Poincaré Characteristic
Considering a 2-manifold mesh with 𝑓 faces, 𝑣 vertices, 𝑒 edges, genus 𝑔, and 𝛿
boundary polygons, the Euler-Poincaré characteristic can be used to determine if two
2-manifold meshes are homeomorphic. The Euler-Poincaré characteristic is defined
as:

𝑓 + 𝑣 − 𝑒 = 2 − 2𝑔 − 𝛿. (1.1)

We can say that two 2-manifold meshes without boundary (𝛿 = 0) are homeomorphic
to each other if and only if they have the same Euler-Poincaré characteristic, i.e., if
the left-hand side (or right-hand side) of equation (1.1) evaluates to the same value
for both meshes. We can see from (1.1) that this is only possible in the case where
both meshes have the same genus 𝑔. Equation (1.1) also tells us that two 2-manifold
meshes with boundary (𝛿 > 0) can only be homeomorphic if, in addition to having
the same genus 𝑔, they also have the same number of boundary polygons 𝛿. From



10 CHAPTER 1 Coding of dynamic 3D meshes

these observations, we can conclude that in order for two 2-manifold meshes to be
considered topologically equivalent, it does not matter how many vertices, faces, or
edges they each have, as long as they have the same number of "handles" (in the case
of meshes with genus 𝑔 > 0) and the same number of boundary polygons (for meshes
with boundaries). Indeed, this is an intuitive conclusion, because any discrete 3D
model of a real-world object, such as a mesh or a point cloud, represents only one
possible sampling of the real surface of the 3D object; therefore, many such samplings
are possible to represent the same surface topology.

In a triangle manifold mesh, we know that each face is constructed from 3 edges.
If we then assume that there is a sufficiently large number of edges and triangles
and that the ratio of the number of boundary edges (if these exist) to the number of
non-boundary edges is negligible [7], we can say that each edge is generally shared
by two triangles (as is the case for a manifold mesh without boundary), and thus the
number of edges in this mesh is approximately 𝑒 ≈ 3 𝑓 /2. We can then substitute this
value for 𝑒 into the Euler-Poincaré formula in (1.1), to obtain:

𝑓 + 𝑣 − 3 𝑓 /2 ≈ 2 − 2𝑔 − 𝛿. (1.2)

Rearranging (1.2) to solve for 𝑣, we get:

𝑣 ≈ 𝑓 /2 + 2 − 2𝑔 − 𝛿. (1.3)

Since 𝑓 /2 is much larger than 2−2𝑔−𝛿, we can simplify (1.3) to obtain 𝑣 ≈ 𝑓 /2. This
tells us that a typical triangle mesh has approximately twice as many faces as vertices.
Furthermore, since we have approximated the number of edges as 𝑒 ≈ 3 𝑓 /2 and we
also have 𝑣 ≈ 𝑓 /2, this gives us the approximate relationship between the number of
edges and the number of vertices as being 𝑒 ≈ 3𝑣. From Euler’s degree-sum formula
for graphs [8], we can conclude that the sum of the degrees of all the vertices in a
mesh is equal to twice the number of edges in that mesh; thus we have:∑︁

𝑑𝑒𝑔𝑟𝑒𝑒𝑠 = 2𝑒 ≈ 6𝑣. (1.4)

This tells us that in a typical triangle mesh, the average vertex valence (see Section
1.2.4) is 6, which means that, on average, one vertex will be shared by 6 different
faces.

1.2.7 Mesh data structures
Several kinds of data structures [9] can be used to represent meshes. Some, like the
Indexed Face Set, are more suitable for rendering, whereas some others such as the
Half Edge, the Corner Table, or the Adjacency Matrix, are more adapted for geometry
processing. A review of these data structures can be found in [9], and Kettner also
discusses the different Half Edge variants in [10]. The Half Edge and the Corner
Table consume more storage space than the Indexed Face Set, since they store more
data to permit efficient traversals of the mesh graph, such as requesting one-ring



1.3 Static meshes 11

neighbors of a vertex and other similar operations. Note that both the Half Edge and
Corner Table cannot represent non-manifold meshes. The Adjacency Matrix is quite
a compact representation, but it does not encode the entire mesh representation and
is generally used as an intermediate data structure. Many common file formats for
3D mesh models, such as VRML/X3D [11], OBJ [12], PLY [13], etc., rely on the
Indexed Face Set representation.

We know from Section 1.2.6 that in a typical triangle mesh with 𝑣 vertices and 𝑓

faces, we can approximate 𝑣 ≈ 𝑓 /2. Thus, such a mesh stored as an explicit list of
independent triangles, where each triangle is described by the three 32-bit floating-
point coordinates for its vertices, requires about 2×3×96𝑣 = 576𝑣 bits. Furthermore,
this representation provides no explicit information regarding the adjacency between
neighboring triangles or vertices. An Indexed Face Set representation theoretically
requires log2 (𝑣) bits to encode each vertex index, and since we know from Section
1.2.6 that in a typical triangle mesh each vertex will be referenced by 6 different faces
on average, this means that around 6𝑣 log2 (𝑣) bits will be required for the connectivity
data in total. This must be accompanied by a vertex table, which requires a further
96𝑣 bits, if 32-bit floats are used. As stated in [14], the Corner Table requires about
12𝑣 log 2(𝑣) bits and must be accompanied (as for the Indexed Face Set) by a vertex
table, which requires 96𝑣 bits. However, it was found in [15] that for large, arbitrary
surface meshes (e.g., 𝑣 > 1000), the theoretical upper bound for the number of bits
required to describe the mesh connectivity is around 3.24𝑣.

Therefore, the Indexed Face Set representation, and the other representations
mentioned above, are far from optimal in terms of mesh compression. For this reason,
many different mesh compression algorithms have been proposed in the literature to
date, which attempt to encode the mesh connectivity and geometry in a more compact
manner; some of these compression techniques will be mentioned in the following
sections.

1.3 Static meshes
The topic of static mesh compression has been extensively studied in the past few
decades [7,16,17], and several static mesh compression implementations are freely
available [18–21]. Since many of the AM and TVM compression methods (see Sec-
tions 1.4 and 1.5) use static mesh compression approaches in parts of their algorithms,
in the current section we will briefly review some of the most well-known static mesh
compression techniques. We will categorize our review into three sub-sections: con-
nectivity compression, vertex (geometry) coding, and standards and software.

1.3.1 Connectivity Compression
Connectivity compression methods are usually divided into two categories: single-
rate and progressive compression. Single rate methods were traditionally designed to
reduce the storage or transmission load between a CPU and a graphics card. These
methods encode the entire mesh model (its geometry, connectivity, and attributes) as



12 CHAPTER 1 Coding of dynamic 3D meshes

a whole, so the graphics card cannot render the reconstructed model before the entire
bitstream of mesh data has been wholly received. Meanwhile, progressive methods are
used when a highly detailed mesh is transmitted over bandwidth-restricted channels
or consumed by devices with different decoding and rendering capabilities. These
methods allow a 3D mesh to be decomposed into a number of different “resolution”
or quality levels, so that it can be reconstructed incrementally from coarse to fine
levels of detail, or from worse to better quality, by the decoder. In general, single-
rate compression methods perform a traversal of the mesh elements and identify
configurations that can be easily encoded, while progressive compression methods
use mesh simplification tactics to achieve the necessary hierarchical representation.

An efficient way to represent the list of triangles in a mesh is to arrange them into
triangle strips or triangle fans. Instead of three indices per triangle, a triangle strip
sends a sequence of triangles connected by one edge and can describe 𝑛 triangles using
𝑛 − 2 indices. In the case of a triangle fan, a series of triangles share a single vertex,
and similarly 𝑛 triangles can be described using 𝑛 − 2 indices. Due to their efficiency
and simplicity, triangle strips and triangle fans are primitives often used in computer
graphics description languages like openGL [22] and DirectX [23]. Deering [24],
Chow [25], and Bajaj et al. [26] are examples of single-rate compression algorithms
based on triangle strips and triangle fans.

Meshes can also be represented by graphs such as tree structures. For instance,
in a vertex spanning tree, the nodes represent the mesh vertices, while the branches
represent which vertices are connected to each other. In the case of a face spanning
tree, the nodes correspond to a triangle, and the connected nodes indicate which
triangles share an edge. These concepts were used by Taubin and Rossingac [27]
in their Topological Surgery algorithm, and by Diaz-Gutierrez et al. [28] in their
Hand-and-Glove algorithm.

Some methods use a border line to divide the mesh into two parts: an inner
part and an outer part. At first, the face of a single triangle defines the inner part,
while all the other triangles belong to the outer part. Then triangles are iteratively
assimilated by the inner part in a region-growing fashion. The growing operations
are described by symbols. Once the mesh has been entirely covered by the growing
region, processing the symbols in reverse order at the decoding stage reconstructs
the connectivity of the mesh. When the region growing operation takes into account
the vertices and their respective valences, it is called valence encoding, and if the
region growing operation takes into account the neighboring triangles, it is known as
a triangle conquest approach.

The pioneering valence encoding algorithm from Touma and Gotsman [29] is
considered to be one of the most efficient single-rate mesh compression algorithms,
but it is only suitable for oriented manifold 3D meshes. Mamou et al. [30] proposed
TFAN, a triangle fan-based compression method that encodes non-manifold and non-
oriented triangle meshes by partitioning the mesh into a set of triangle fans. Then,
TFAN encodes the configuration of triangle fans using symbols that describe 10
different arrangements and the degree of vertices. In the case of triangle conquest
approaches, the Cut-Border machine [31] and Edgebreaker [32] are examples of



1.3 Static meshes 13

coding algorithms that use symbols to indicate the presence of neighboring triangles
and also grow the number of traversed triangles. In the Edgebreaker case, using the
valence of the vertices to specify a different entropy context improves the encoding
of the symbols [33]. Furthermore, efficient implementations can use data structures
such as the Corner-Table [34].

Usually, single-rate compression methods preserve the connectivity of the mesh.
But when the lossless criteria is not mandatory, algorithms can use remeshing tech-
niques to improve compression performance. The new connectivity is often regular
and uniform, and can therefore achieve higher compression gains, as exemplified in
the proposals from Szymczak et al. [35] and Attene et al. [36], among others.

In progressive compression methods, a simplification operation iteratively mod-
ifies the original mesh. The base mesh, which results from all the accumulated
simplification operations, is then used together with the simplification operations to
describe (reconstruct) the original mesh in a progressive manner. By using a reduced
set of simplification operations, the resulting coarser mesh can also be used to render
a lossy representation of the original mesh. One example of a mesh simplification is
the vertex split and the edge collapse operations used by Hoppe [37] in his Progres-
sive Mesh method. It is also possible to group the vertex split operations together
to generate more efficient intermediate representations of the progressive meshes, as
was done by Taubin et al. [38] in their Progressive Forest Split proposal.

Another method for simplifying a triangular mesh and generating a hierarchical
representation is to use the vertex decimation technique, first introduced by Schroeder
et al. [39]. The vertex decimation approach simplifies a mesh by removing a vertex
and all its adjacent edges, and then retriangulating the resulting hole with fewer
triangles than were originally present in that location. Cohen-Or et al. [40] also used
the vertex decimation approach in their patch coloring algorithm for progressive mesh
compression.

1.3.2 Vertex (Geometry) Compression
The mesh vertex coordinates (𝑥, 𝑦, 𝑧) are usually represented, by default, as IEEE
32-bit floating-point values, but lower resolutions can be used without any visual
impairment (for a human observer). A common approach for geometry compression
is to first quantize the floating-point values to integers, whereby the quantization
resolution is typically 8- to 16-bit. Even though vector quantization and non-uniform
quantization have been used and demonstrated superior performance [5,16], most
existing algorithms simply apply scalar uniform quantization due to its simplicity and
generally adequate performance. Uniform scalar quantization is equivalent to creating
a 3D grid inside the bounding box of the mesh, and then snapping the vertices to the
nearest grid position, in order to convert the vertex positions to integer values within
a chosen integer range.

Following quantization, many methods apply prediction strategies to reduce the
entropy of the quantized signal, which can then be losslessly encoded with an entropy
encoder such as Huffman or an arithmetic encoder [41]. In the case of single-rate



14 CHAPTER 1 Coding of dynamic 3D meshes

mesh compression, the mesh traversal produced by coding the connectivity usually
influences the prediction, since it imposes a decoding order for the vertices and
determines the available reconstructed values. Usually, a combination of previously
decoded vertices predicts the current position. Delta prediction [24,25] uses the
difference between the current and latest decoded vertex in a Differential Pulse-Code
Modulation (DPCM) fashion. The 𝐾 previous coefficients of a vertex spanning tree
can be used for Linear prediction [27] of the next vertex position. One of the most
popular methods is the Parallelogram prediction [29]. The latter predicts by using the
vertices connected to the predicted position and the vertex opposite to that position -
that is, the vertex from the triangle that shares the edge. The prediction is the vertex
of a parallelogram formed with the three vertices, which are assumed to be coplanar.
To overcome the limitation of coplanar vertices, other methods propose variations of
the Parallelogram prediction by analyzing the angles between triangles [42,43].

Apart from the somewhat standard geometry compression framework of quanti-
zation, prediction, and entropy coding, other researchers have proposed alternative
methods for geometry compression, which consider more the mesh shape. For ex-
ample, Karni and Gotsman [44] used the concepts of a graph representation of a
mesh, and the Laplacian matrix, for mesh geometry compression. For a mesh with
𝑛 vertices, the Laplacian matrix (sometimes referred to as the Tutte Laplacian) is a
𝑛 × 𝑛 matrix with ones on its main diagonal and −1/𝑑𝑒𝑔(𝑣𝑖) in the positions (𝑖, 𝑗),
where 𝑑𝑒𝑔(𝑣𝑖) is the degree of a vertex 𝑣𝑖 adjacent to a vertex 𝑣 𝑗 . The eigenvalues
of this matrix can be used as basis functions to obtain a spectral decomposition of
the mesh surface, and can thereby be used to compress the mesh geometry. Karni
and Gotsman [44] used this principle to propose a progressive mesh compression
approach for the geometry component. The Laplacian matrix can be generated with
the connectivity only, then coefficients resulting from projecting the geometry infor-
mation onto the eigenvectors of the Laplacian matrix can be sent in a progressive
manner (from high to low magnitude) to obtain a progressively better mesh shape
reconstruction.

Based on a similar principle of sending coefficients of a transform, Gu et al. [45]
proposed Geometry Images, which maps the mesh surface to a regular squared image
and uses wavelets to compress and transmit the image. This prioritizes the encoding
of the mesh geometry, but the connectivity is converted to a semi-regular mesh.
Other algorithms that prioritize geometry over connectivity in a progressive manner
use tree structures to create hierarchical representations of the vertices. For instance,
Devillers and Gandoin [46] use the kd-tree to encode the mesh geometry, while Peng
and Kuo [47] use an octree instead. Both approaches are able to reconstruct the
original mesh’s connectivity.

Other mesh properties, like normals and texture coordinates, are usually repre-
sented using an array of floating-point values, and similarly to vertex positions, can
be encoded by using quantization, prediction and entropy coding. Since in most
cases the connectivity and reconstructed vertex positions are available before com-
pression of other mesh attributes, they can be used when compressing these other
mesh properties. For the Parallelogram prediction of texture coordinates, Isenburg



1.3 Static meshes 15

and Snoeyink [48] proposed four different rules considering the presence of texture
discontinuities. They can be identified in the mesh connectivity by noticing that one
edge for geometry transforms into two edges for the texture connectivity (also known
as a crease edge). Váša and Brunet [49] also proposed a Parallelogram prediction
modification, but in their case they explicitly use the geometry information to improve
the prediction of UV coordinates.. Those are two examples of single-rate approaches,
but progressive methods for textured meshes have also been proposed, such as the
method from Caillaud et al. [50], which creates the hierarchical representation of
the mesh by taking into account the texture seams as well. For per-vertex color
compression, Ahn et al. [51] noted that a simple first-order predictor for colors is
enough, and they used mapping tables to encode RGB values. In the case of normals,
the authors proposed to use a unit sphere representation divided into 6 parts, and to
quantize each part into a 4×4 matrix, different from other schemes that usually use the
octahedral representation [52] for normal compression. The quantized normals are
then predicted by using an average of the normals from vertices in three neighboring
triangles.

1.3.3 Standards and Software
The Motion Picture Experts Group (MPEG) is well-known for producing international
ISO standards for video and image compression [53]. In the early 2000’s, MPEG
published the MPEG-4 standard [54], aimed at compressing multimedia audio-visual
scenes, including interactivity with different kinds of multimedia objects, such as
synthetic textured meshes. This standard includes static 3D mesh coding tools, like the
Topological Surgery algorithm [27], and several progressive mesh compression tools,
for instance the Progressive Forest Split [38], the Wavelet Subdivision Surface [55],
MeshGrid [56], and Footprint [57].

Acknowledging the importance of a trade-off between compression and computa-
tional resources, especially with the proliferation of graphics cards in mobile systems,
MPEG developed the Animation Framework eXtension (AFX), specified in Part 16 of
MPEG 4 [58]. The Scalable Complexity 3D Mesh Compression (SC3DMC) toolset
of AFX can choose among three 3D mesh coding techniques: Quantization-Based
Compact Representation (QBCR), Shared Vertex Analysis (SVA), and Triangle FAN
(TFAN). Connectivity is not compressed in QBCR, while SVA and TFAN apply the
proposals from Jang et al. [59] and Mamou et al. [30]. Note that QBCR and SVA
maintain the original order of vertices/faces, while TFAN reorders them (although
one can code the mapping between input and compressed meshes). The geometry
is quantized, predicted and entropy encoded in all three options. Six different pre-
dictions are possible (including the Parallelogram prediction [29]) and five different
entropy coding modes may be selected as well. Normals, texture coordinates, color
per vertex and generic attributes can also be encoded, whereby normals are converted
to the octahedral representation [50] and texture coordinates are quantized according
to the texture map dimension. An open-source and royalty-free implementation of
the AFX standard [19] has been included in the glTF, the standard file format for



16 CHAPTER 1 Coding of dynamic 3D meshes

three-dimensional scenes and models from the Khronos group [60].

The glTF standard has also included an extension for mesh compression based
on Draco [18], the point cloud and mesh compression tool from Google. Draco has
three modes for connectivity compression: a sequential encoder, which encodes the
indices directly, the efficient Edgebreaker algorithm [34], and also an Edgebreaker
Valence Encoding method [33]. Draco then reorders the vertices and encodes their
attributes (geometry, texture coordinates, normals, etc.) following the traditional
quantizion, prediction, and entropy encoding steps. For the prediction of vertex
positions, Draco can either use the difference from the last decoded position, the
Parallelogram predictor [29], or the Multi-Parallelogram predictor, which uses all
the triangular faces opposite to the predictor vertex. For texture coordinates, Draco
also includes the Constrained Multi-Parallelogram predictor, which explicitly selects
which parallelograms to use for prediction by marking the crease edges between
triangles. For normal coding, Draco uses the octahedral representation [50], and
performs prediction by weighting the normals from neighboring triangles by the
triangles’ areas.

1.4 Constant-connectivity mesh sequences

A so-called animated mesh is a sequence of static meshes, where each frame represents
the dynamic mesh at a given point in time. The connectivity, topology, and colours of
the animated mesh remain constant across all the frames; it is only the geometry (vertex
positions) that changes over time. As mentioned in the Introduction of this chapter,
such animated meshes are usually computer-generated (not obtained from real-life
captures) and are most commonly used in the gaming and film (VFX) industries, but
also for medical and scientific visualizations. However, animated meshes are not
suited to volumetric video coding, since they do not support varying photometry or
topology over time. Nevertheless, we will see in Section 1.4.1 that it is possible to
produce or transform some variable-connectivity mesh sequences (see section 1.5)
into sub-sequences of meshes with constant connectivity. Once obtained, each sub-
sequence (or group of frames) can then be encoded using animated mesh compression
techniques.

In the current section, we first give a quick overview of possible solutions to
obtain constant-connectivity mesh sequences from variable-connectivity mesh se-
quences. We then provide a summary of work to date that proposes compression
algorithms for constant-connectivity mesh sequences. We will base our presentation
of animated mesh compression techniques on the work in [16] from 2015, and extend
their taxonomy with more recent publications, using the following categories (see
Figure 1.1): segmentation, Principal Component Analysis (PCA), spatio-temporal
prediction, wavelets, surface unfolding, and spectral analysis.



1.4 Constant-connectivity mesh sequences 17

1.4.1 Tracking and re-meshing
At the production stage of real-life volumetric video captures, generating meshes
independently for each frame of a mesh sequence produces meshes with variable
connectivity. However, in order to leverage existing AM compression schemes,
a consistent connectivity over frames is required. The process of transforming a
variable-connectivity mesh sequence into a constant-connectivity mesh sequence is
called mesh tracking.

As an example of variable-connectivity mesh sequence conversion into constant-
connectivity sequences, Collet et al. [61] present a complete tool chain for acquisition,
reconstruction, tracking and compression. After reconstruction, they obtain a set of
frames of variable connectivity. They first subdivide the sequences into sub-sequences
of similar topology (recall that different connectivities can define a similar topology).
To do so, they compute which frames are the most promising to be used as keyframes
(i.e., frames whose meshes are well representative of their neighbor frames). They
search for frames of higher surface area, of lower genus (see Section 1.2.3), and with
a higher number of connected components (see Section 1.2.5). Once keyframes are
found, they use the state-of-the-art non-rigid Iterative Closest Point (ICP) algorithm
of Li et al. [62] to perform mesh registration, though other approaches [63,64] can
be adapted as well. Following this re-meshing, the frames of each sub-sequence
have the same connectivity and a stable texture 𝑢𝑣 atlas (i.e., a temporally consistent
parameterization). The sub-sequence can then be coded by any AM coding method
(in [62] the authors use their own, prediction-based solution). Furthermore, the frame
texture atlases are stable over the entire sub-sequence, which leads to higher quality
for fixed compression bitrates of the texture stream by using MPEG H.264 or other
standard 2D video coding schemes. In [65] Prada et al. extend this tracking method
using local re-meshing, to permit tracking over long sequences containing significant
deformations or topological changes, which further enhances texture atlas stability.
Extracting a spatio-temporally coherent mesh out of a 4D capture is an active area of
research, and one can refer to [61–66] for further references.

It should be noted that tracking is a time-consuming process that implies some re-
meshing and some texture re-projections, which in turn implies inevitable distortions
from the original, non-tracked animated sequence. Thus, tracking is better performed
at production time during the reconstruction stage, where all the parameters are
controlled, rather than at the compression stage. The tracking solution is thus not
very practical in the case of a standalone TVM coder. We will see in Section 1.5 other
approaches to encode TVMs that do not rely on tracking. But first, let us review the
existing AM coding approaches.

1.4.2 Methods based on segmentation
The existing segmentation-based approaches for animated mesh compression consist
in partitioning the vertices of the dynamic mesh into groups of vertices, called clusters,
where each cluster represents a section of the dynamic mesh that has similar movement



18 CHAPTER 1 Coding of dynamic 3D meshes

over time. In 1999, Lengyel proposed the first animated mesh compression algorithm
(of all the categories) based on this approach [67]. The clusters in [67] are defined
with respect to a reference frame and determined using a heuristic where a set of seed
triangles is chosen at random. The movement of each cluster, estimated by a rigid
transformation, is used as a predictor to extrapolate the positions of vertices in the
current frame from the reference one. The animation is then encoded using the set
of motion parameters for each cluster, as well as the prediction errors associated with
each vertex.

Gupta et al. [68] improved the solution in [67] by using the Iterative Closest Point
(ICP) algorithm to compute the displacement of the vertices. In their solution, the
initial segmentation is based on a topology partitioning algorithm and is then refined
based on some motion coherency criteria. The authors presents a compression ratio
of 45:1, compared to 27:1 for the Lengyel solution on an animated chicken model.

Later, Collins et al. [69] improved Lengyel’s solution by using only rigid trans-
forms without the encoding of residual errors. The authors in [69] introduce a new
distortion bound segmentation algorithm based on a weighted least-squares approach
that minimizes the number of generated clusters according to the distortion criterion.
This solution, however, produces geometric seams between patches, and requires a
low-pass filtering of vertex displacements that is performed as a post-processing to
attenuate the artifacts.

Sattler et al. [70] also proposed an improved segmentation using clustered ver-
tex trajectories, by integrating a combination of Lloyd’s algorithm (also known as
Voronoi iteration) and Principal Component Analysis (PCA). Each generated cluster
is compressed independently using PCA.

Amjoun et al. [71] partitioned mesh vertices into clusters by applying k-means
clustering [72], where vertex motions can be described by unique 3D affine transforms.
The resulting clusters are then encoded using PCA. The algorithm segments the
animated mesh into clusters by using a region-growing algorithm, and transforms
the original vertex coordinates into the local coordinate frame of their segment.
However, the results are seriously dependent on, and affected by, the choice of initial
seed vertices.

Mamou et al. [73] also consider a segmentation into almost rigid parts, by per-
forming a hierarchical decimation, which privileges the simplification of neighboring
vertices with similar affine motion. The motion of each vertex is then expressed
as a weighted linear combination of the cluster motions using a skinning approach
adapted from skeletal animation techniques. Motion compensation errors are finally
compressed using the Discrete Cosine Transform (DCT), which makes the stream spa-
tially scalable if the DCT coefficients are ordered. This approach was later combined
with [74] to define the MPEG FAMC [75] standard (see Section 1.4.8).

In [76], Luo et al. make extensive use of a spatio-temporal approach. They first
compute an initial temporal cut on the input mesh sequence to obtain a small sub-
sequence by detecting the temporal boundary of dynamic behavior. Then, they apply
a two-stage vertex clustering on the resulting sub-sequence to classify the vertices into
groups with optimal intra-affinities. After that, they perform a temporal segmentation



1.4 Constant-connectivity mesh sequences 19

step based on the variations of the principal components within each vertex group. The
obtained sub-sequences of clusters are compressed using PCA. They finally perform
a lossless compression of the PCA bases and coefficients using ZLib. Their solution
generates geometric artifacts at the cluster boundaries, so they generate clusters of a
larger size to overlap sibling clusters. They present results ranging from 0.63 to 7 bits
per vertex per frame (bpvf) on a range of test models.

1.4.3 Methods based on Principal Component Analysis
Principal Component Analysis (PCA) methods find a new orthogonal basis to describe
the motion of an animated mesh, and achieve compression by using a reduced set
of basis eigenvectors. The frames of a mesh sequence are then represented by
coefficients obtained from projecting the mesh onto the new (reduced) basis. PCA
can be used in two different ways: either by exploiting the temporal correlation of
frames and finding the average shape of the sequence (Eigenshapes), or by exploiting
the spatial correlation of the vertices’ trajectories and finding the average trajectory
(Eigentrajectories).

Alexa and Muller [77] proposed the first method that applied PCA to obtain the
Eigenshapes. In [77], the vertices of the mesh are arranged in a matrix of size
3𝑣 × 𝑓 , where 𝑣 is the number of vertices and 𝑓 is the number of frames. Note
that the vertex positions are not the coordinate positions in the corresponding frame,
but actually the residual positions after global motion compensation, in order to de-
couple the elastic and rigid motion components. By decomposing the matrix using
Singular Value Decomposition (SVD), the first matrix contains the eigenshapes of
the sequence, the second matrix contains the eigenvalues, and the third one contains
the coefficients of the frames in the new basis formed by the eigenvectors (i.e.,
eigenshapes). The animation is compressed by sending the basis vectors for the
animation, and the coefficients and global motion estimation per frame. To improve
the coding of the coefficients, Karni and Gotsmann [78] proposed a linear predictor
based on the Parallelogram predictor. To better adapt the PCA solution to the
motion, Sattler et al. [70] proposed spatial clustering of vertices, while Luo et al. [79]
proposed temporal clustering of the frames. Amjoun and Straßer [80] also used spatial
clustering of vertices, but additionally proposed a rate-distortion allocation by having
more eigenvectors at clusters that underwent extreme deformations. A progressive
animated compression using PCA was also proposed by Kao et al. [81]. With the
latter method, the decoder can choose any combination of mesh or motion resolution.

The challenge with PCA methods is that the dimension of the auto-correlation
matrix used in the SVD decomposition is dependent on the number of vertices, which
can be quite large, usually compared to the sequence of frames that is commonly
a couple of seconds long. Furthermore, the PCA eigenvectors need to be precisely
encoded and there is little correlation between them. Therefore, Váša and Skala [82]
proposed CODDYAC. This codec uses PCA in the vertex trajectories instead of their
shape - that is, the vertices are arranged in a matrix of size 3 𝑓 × 𝑣 instead, which
leads to smaller auto-correlation matrices and smaller eigenvectors. The coefficients



20 CHAPTER 1 Coding of dynamic 3D meshes

are then traversed using the Edgebreaker algorithm, and encoded using the Parallel-
ogram prediction. Subsequent publications from the same authors [83,84] improved
the performance of CODDYAC by compressing the Eigentrajectories using motion
models and the coefficient predictors by using local neighborhoods. Váša [85] further
optimized the mesh traversal, and with that achieved one of the best performances for
CODDYAC. Next, Váša et al. [86,87] used geometric Laplacian and mesh averaging
techniques to improve the original CODDYAC performance, as judged by a perceptual
metric.

Even though the compression performance of PCA methods is better than other
proposed methods for animated meshes, these are global methods that use all the
frames to compute the optimal basis. Therefore, it is challenging to use PCA in
streaming applications. Furthermore, the computation cost of calculating the SVD
can be prohibitive as well, for large (dense) mesh models or long sequences. To
reduce the computation time of the SVD calculation for both Eigentrajectories and
Eigenshapes, Lalos et al. [88] proposed an efficient method to update the SVD using
adaptive orthogonal iterations. They also use intervals of 10 frames, which can be
used in low-delay applications, but the compression performance is reduced.

1.4.4 Methods based on spatio-temporal prediction
Due to the fact that the topology of animated mesh sequences is constant over time,
the animated vertices generally exhibit strong redundancies and correlations between
frames. Differently from global PCA-based methods presented in the previous sub-
section, prediction methods for animated mesh compression exploit local coher-
ences and are thus computationally efficient and more suited for real-time streaming.
These methods extend the spatial prediction approaches, such as the parallelogram
ones [29,43], to exploit these temporal properties, by either interpolating between
spatial or temporal surrounding positions, or by extrapolating from previous frames.
Ibarria et al. [89] present two spatio-temporal predictors in their Dynapack framework:
Extended Lorenzo Predictor (ERP) and REPLICA. ERP directly extends the paral-
lelogram method originally introduced by [29] for static mesh compression, while
REPLICA extends ERP to make it more robust to rotation and scale transformations.

In [90,91] Zhang proposes an alternative approach based on a segmentation method
using an octree based motion representation for each frame. Two consecutive frames
are used to generate a small set of motion vectors that represent the motion from the
first frame to the other. Quantization and an adaptive arithmetic coder are used to
achieve further data reduction. An optimized version of this approach was introduced
in [92] by Müller et al. In the solution in [92], called Dynamic 3D Mesh Coder
(D3DMC), the authors extract only one representative for a cluster of difference
vectors, which provides a significant reduction in the data rate. A context-adaptive
binary arithmetic coder (CABAC) [93] is finally used to code the representative of
the clusters, which have been previously scaled and quantized. Müller et al. [94] later
refined their solution with a rate-distortion approach.

Amjoun and Straßer [95] encode delta vectors in local coordinate systems. How-



1.4 Constant-connectivity mesh sequences 21

ever, the encoding performance is strongly dependent of the seeds selected for the
surface segmentation that they perform.

Stefanoski et al. [74] introduce the decomposition into layers, which are basically
mesh levels-of-detail. This approach has become a foundation for several other
proposed methods. It was refined by Stefanoski et al. with scalable predicitive coding
(SPC) in [96], which was the first solution to provide spatio-temporal scalability,
and provides an excellent compression ratio as well (between 3.5 and 8 bpfv). The
solution in [96] was then further extended by Bici and Akar [97] through novel
prediction approaches. Finally, Ahn et al. [98] managed to obtain a 30% gain in
performance (compression ratio between 2 and 6 bpvf) compared with SPC, still
using the same layered approach.

1.4.5 Methods using wavelets
Wavelet-based mesh compression methods first became popular with the introduction
of subdivision wavelets by Lounsbery et al. in the mid- to late-1990s [99,100]. In these
seminal papers, the authors established a theoretical basis for extending the concept
of multiresolution analysis (specifically, wavelets) to surfaces of arbitrary topological
type, by defining a wavelet-like basis for a mesh surface using the subdivision rules
from Loop [101]. The main idea behind subdivision wavelets is to decompose a high-
resolution input mesh into a very coarse representation called a base mesh, and a set of
detail coefficients termed wavelet coefficients. At the decoder, the wavelet coefficients
can then be used to progressively refine the base mesh at multiple levels of detail
(resolution). Because the connectivity of the mesh can be refined in a predictable
manner using a set of standard subdivision rules known to both the encoder and
decoder, the only connectivity data that needs to be transmitted is the connectivity of
the base mesh, which is usually negligible. However, the main restriction with this
approach is that the input mesh must have a semi-regular connectivity (see Section
1.2.4). This means that the connectivity of the input mesh must be able to be achieved
by repeatedly subdividing each face of a coarse base mesh into 4 sub-faces until the
resolution of the input mesh is obtained.

Many wavelet-based mesh compression algorithms that exist today are based on a
similar principle as the original subdivision wavelets algorithm [99,100]. Since with
this technique the mesh connectivity does not need to be encoded separately at each
resolution level, the priority of such compression algorithms is on the coding of the
mesh geometry. Geometry compression is usually achieved by either discarding small,
negligible wavelet coefficients at various resolution levels, and/or by quantizing and
entropy coding the wavelet coefficients that are chosen for transmission to the decoder.
While subdivision wavelets were originally used for static mesh compression [55,99,
100,102], they have also been applied to animated mesh compression [103,104]. In
both [103] and [104], the hierarchical mesh subdivision is performed on the first
frame of the sequence, and then hierarchical motion estimation is used to map the
same topology to the other frames. As well as decomposing each frame of the mesh
sequence into a base mesh and wavelet coefficients, the wavelet subdivision is applied



22 CHAPTER 1 Coding of dynamic 3D meshes

temporally, along the motion trajectories. The wavelet coefficients are encoded using
SPIHT [55].

Although semi-regular remeshing for the subdivision wavelet transform has the
obvious advantage that the mesh connectivity data needs no encoding (apart from
the base mesh connectivity), in some applications it might be important to preserve
the original mesh connectivity. For this reason, several researchers have proposed
methods for compressing constant-connectivity animated mesh sequences that have
an irregular connectivity, without requiring a prior remeshing to a semi-regular
connectivity, e.g., [105,106]. In [105], a more compact version of the multiresolution
representation presented in [107] (which is based on the non-uniform subdivision
method of [108]) is introduced. The wavelet coefficients in [105] are computed by
using the mesh geometry rather than just the mesh connectivity as in earlier subdivision
wavelet schemes. More specifically, the wavelet coefficients are computed based on
the geometry of a parametric mesh. The first frame of the animated mesh sequence
is used as a parametric mesh, and all the other frames are transformed with wavelet
coefficients computed from this parametric frame. The parametric frame is encoded
separately using a static mesh compression technique. The method in [106] is similar
to [105], but it allows lossless compression as well as lossy.

More recent approaches for animated mesh compression that make use of wavelets
consider wavelets defined on graphs [109–111]. In [109], Graph Wavelet Filter Banks
(GWFB) [112] are used to compress the geometry and colour of animated mesh
sequences representing moving human bodies. Both [110] and [111] make use of
Spectral Graph Wavelet Transforms (SGWT) [113].

1.4.6 Methods based on surface unfolding
Inspired by Gu’s Geometry Images [45], Briceño extends the principle of unfold-
ing the mesh into an image to animated sequences [114]. The solution is called
Geometry Videos. In this solution, the surface is cut and unfolded using stretch
minimization [115]. It is first re-sampled and re-organized so that it becomes highly
compressible. A strong advantage of the solution is that it can leverage classical 2D
video compression techniques (such as MPEG HEVC or VVC) to encode the geometry
signal (images). Its drawback resides in the fact that the surface re-sampling and the
regular re-meshing introduces some non-negligible distortions in the reconstructed
model and the original mesh connectivity is not preserved (unless the mesh happens
to have a regular connectivity already, which is rare).

In [116], Mamou proposes the use of Multi-Chart Geometry Video, which, sim-
ilarly to a UV texture atlas, unwraps the surface into several components instead
of only one as in [114]. It then leverages rigid transforms as described in [67], to
enhance compression, but using a fixed number of patches. The prediction errors
are represented as Multi-Chart Geometry Images that can be encoded using standard
2D video encoders. The proposed solution preserves the original topology of the
mesh, thus reducing distortions. The use of a piecewise affine predictor leads to better
compression than [114]. Finally, the solution in [116] makes use of a low-distortion



1.4 Constant-connectivity mesh sequences 23

atlas of parameterization [117], which leads to lower distortion than when using a
simple mapping on a 2D square domain.

1.4.7 Methods based on spectral analysis
Karni and Gotsman [44] have shown that spectral methods can be applied to static
mesh compression by using the combinatorial graph Laplacian matrix to extract from
the mesh’s connectivity a basis to encode the geometry. The Laplacian matrix is
formed by considering only a one-ring neighborhood of the vertices, which leads to a
sparse matrix whose eigenvectors can be easily extracted. However, this dependence
on the mesh’s connectivity makes the eingenvectors dependent on the quality of the
meshing, which may vary for objects even with the same topology. In order to cir-
cumvent this problem, Vallet and Lévy [118] proposed the Manifold Harmonic Basis
(MHB), derived as eingenvectors from the Laplace-Beltrami operator. The proposed
framework is independent of the meshing and generates an orthogonal basis that can
be used in several different applications, from mesh filtering to parameterization and
even compression.

In [119], Wang et al. use spectral analysis to compress animated meshes by
projecting on an MHB the field of deformation gradients defined on the surface
mesh. The deformation gradient (that is, how the vertices of each triangle rotate and
stretch from one frame to another) can be represented by a second-order tensor, or a
3 × 3 matrix, which can be decomposed into two matrices (rotation and stretching)
using polar decomposition. Both matrices are then transformed into coefficients by
projecting them onto the MHB. The coefficients are then quantized and arithmetically
encoded. Note that the MHB is defined per vertex, while the deformation gradient
is defined per triangle, so the authors use the average of the functions’ values on the
vertices.

Another approach that uses spectral analysis for the compression of animated
meshes is from Chen et al. [120]. In their proposal, the mesh sequence is divided into
clusters of frames with similar pose by using K-medoids. Then, for each cluster, the
representative frame (i.e. the keyframe) is encoded using a static mesh compression
techhnique and transformed into the MHB coefficients. The other frames are projected
onto the new basis defined by the keyframe, and the MHB coefficients are encoded
with Linear Prediction Coding (LPC), which generate values that are then quantized
and entropy encoded. At the decoder side, the coefficients are inverse-transformed to
generate a low-resolution representation of the non-keyframe. Then the deformation
of the low-resolution keyframe to the full-resolution keyframe is determined, and
this deformation is transferred from the keyframe to the non-keyframe to recover the
high-frequency details.

Both [119] and [120] compare their approaches with PCA-based method COD-
DYAC [82]. For higher bitrates, spectral analysis has a better performance, since
it does not need to send the eingenvectors (they can be derived from the stored
keyframes). Furthermore, it preserves better the shape of the mesh even if its geome-
try (vertex positions) is not reconstructed exactly, which is believed to have a higher



24 CHAPTER 1 Coding of dynamic 3D meshes

impact in terms of perceptual quality. However, for lower bitrates PCA has a better
performance, since it is able to achieve a better quality reconstruction than MHB when
using the same number of basis vectors. Moreover, frames with sharp protrusions
also require a significant number of MHB coefficients for better representation.

1.4.8 The MPEG framework
The first standard to encode animations by the MPEG group, the Face and Body
Animation (FBA) standard [53], targeted human avatars, but was limited to fixed
feature points, like eyes and mouth corners. This standard was later extended to a
more generic framework with the Bone-Based Animation (BBA) [58], which includes
geometric transform of bones (used in skinning-based animation) and weights (used
in morphing animations). For a more generic animation, MPEG first issued the In-
terpolator Compression (IC) [121], which is used to compress key frame animations,
defined by a pair of keys indicating the frame index, and values indicating, for in-
stance, new positions of vertices. In 2009, MPEG added the Frame-based Animation
Mesh Compression (FAMC) to the AFX set of animation compression tools. FAMC
does not depend on how the animation is obtained (deformation or rigid motion) and
compresses an animated mesh by encoding on a time basis the attributes (positions,
normal vectors, etc.) of the mesh’s vertices. It encodes the first frame with any static
mesh compression algorithm, then applies skinning-based motion compensation [73]
and layered decomposition [74]. The skinning-based motion compensation is com-
posed of the following steps: global motion encoding (using the barycenter of the
meshes to remove the global motion), then vertex partitioning (separating the vertices
into clusters using the k-means method), followed by weighted motion compensation
(obtaining the prediction by a weighted combination of the 𝐾 affine transforms for
each cluster). The motion-compensated residue is then transformed (using the DCT
or Lifting transform) and once again the coefficients are predicted by neighboring
frames, but using the layered representation [75]. Improvements over the FAMC
standard have also been reported in [96,122].

1.5 Variable-connectivity mesh sequences
In contrast to the animated meshes discussed in Section 1.4, time-varying meshes
(or TVMs) do not have a fixed topology or connectivity across all frames. They are
also likely to contain different numbers of vertices in different frames. While this
can make TVMs easier to generate from real-world captures (e.g., from images or 3D
scans of real-world objects [123,124], where the mesh for each frame can be generated
independently of other frames), it makes the compression problem much more difficult
than for animated meshes, as there are usually no explicit correspondences between
the vertices or connections across different frames. Furthermore, in a TVM, meshes in
successive frames are not necessarily homeomorphic (see Section 1.2.1), as the surface
reconstruction may be different in different frames. There is also no guarantee that
the meshes in a TVM sequence will be manifold, or that the manifold property will



1.5 Variable-connectivity mesh sequences 25

continue across different frames.
In this section, we aim to provide an overview of the existing literature on time-

varying mesh compression, followed by a discussion on the recent MPEG activities in
this area. The problem of compressing time-varying meshes began to be addressed in
the literature more than a decade ago (e.g., [125,126]), but it has not progressed much
further since then. This is due to both the complexity of the problem and the fact that
the production of TVM content has only begun to gain traction relatively recently as a
result of improvements in volumetric capture systems and increasing interest in using
real data captures instead of only computer-generated models (e.g., see [127]).

We categorize the existing literature on TVM compression by the following meth-
ods: mesh surface unfolding, subdivision of meshes into blocks, and video-based
coding (solutions that leverage standard MPEG V-PCC encoders for compression).

1.5.1 Methods based on mesh surface unfolding
In some of the earliest work on TVM compression [125], the authors propose to
cut open the 3D mesh, then flatten the surface by projecting it onto 2D images,
similarly to the geometry images [45] and geometry videos [114] ideas proposed
earlier. Conventional 2D video coding methods can then be applied to encode the
geometry and associated textures in the 2D images. A notable difference between the
method in [125] and geometry images [45] is that the cut path for unfolding the 3D
mesh with geometry images is selected so that it passes through high-curvature areas
in the mesh, while in [125] the cut passes where no significant texture information
exists.

Similarly to [125], in [128] the authors also make use of the concept of geometry
images [45] and geometry videos [114] to compress TVMs. More specifically, they
use the extension of geometry videos proposed in [129], called conformal geometry
videos (CGVs), which aim to more efficiently represent 3D articulated motion (e.g.,
human motion) than the traditional geometry videos [114]. As in [129], in [128]
salient feature points for the mesh in each frame are first detected (e.g., head, feet,
hands, etc.), and corresponding feature points are found in successive frames. Then the
marked TVMs are mapped to the polycube [130] domain as in [129], the 3D polycubes
are cut open, flattened, and reparameterized onto a regular rectangular 2D domain to
obtain the CGV representation. Since the CGVs have a regular structure, the original
mesh connectivity is not encoded and therefore cannot be reconstructed losslessly.
To compress the CGVs, in [128] the mesh vertices in each frame (2D image) of the
CGV are placed as column vectors in a matrix that contains one column vector per
frame. Next, low-rank approximation (i.e., truncated singular value decomposition
(SVD)) [131] is applied on this matrix of vertex positions (separately for the X, Y,
and Z positions), and the resulting singular values are reshaped back into frames and
are named EigenGVs by the authors. These EigenGVs are by their nature much more
compact than the original CGVs, and they are further compressed in [128] by using
a standard 2D video encoder such as H.264/AVC [132]. The results have been shown
to significantly outperform the original geometry videos [114] method in terms of



26 CHAPTER 1 Coding of dynamic 3D meshes

rate-distortion performance and visual quality. Furthermore, the method in [128]
naturally offers the possibility of a progressive mesh reconstruction, as the user can
choose how many of the EigenGV frames to reconstruct.

1.5.2 Methods based on subdivision of meshes into blocks
In [126,133], the authors propose to extend the idea of 2D block matching from
conventional 2D video coding, to 3D time-varying mesh coding. Matching blocks
across frames are found by comparing the directions of the mean surface normal
vectors (SNVs) in those blocks, and the surface normal vectors across the best-
matching blocks represent the inter-frame motion vectors. The motion vectors are
encoded by using a differential pulse code modulation (DPCM) to obtain predictions
of motion vectors between adjacent blocks (which were found to be highly correlated
for the mesh data used in [126,133]). Residual values are computed in matching blocks
as the minimum sum of the differences of the vertex positions in those blocks. The
residual values are decorrelated by using a 1D Discrete Cosine Transform (DCT), and
the transform coefficients are uniformly quantized, truncated at the higher frequencies,
and entropy coded using Huffman coding.

In [134], the 3D meshes across different frames are first registered (aligned), then
the bounding box of the largest mesh in the sequence is subdivided into sub-blocks,
which the authors call a coarse-level quantization operation. The binary occupancy
information for these sub-blocks is encoded using run-length encoding (RLE). The
binary occupancy bitstreams are further compared (using an exclusive-OR operation
between bitstreams) across different frames to obtain the motion information, and the
resulting difference vectors are further encoded using RLE. To compress the vertex
positions inside each sub-block, uniform quantization is applied and all the vertices
inside a sub-block are quantized to one representative point. The representative points
are then also converted to a sequence of occupancy (1 or 0) bits on a regular grid and
encoded using RLE. Then the runs that have the same lengths are considered "super-
symbols" and further encoded using arithmetic coding. The method in [134] has been
shown to outperform the authors’ earlier work in [133], in terms of rate-distortion
performance.

Contrary to the work in [133,134], where only the geometry data is considered
for inter-frame coding, in [135] the authors propose inter- and intra-frame coding
approaches that consider the geometry (vertex positions), the connectivity, the colour
textures, and any other data that is attached to the vertices. In [135], each 3D mesh
in the TVM sequence is first subdivided into patches of approximately equal surface
area and small enough that they can be considered flat discs. Principal Component
Analysis (PCA) is then applied to place the patches’ centres of gravity at the origin
of the world coordinate system and to adjust the orientation of the patches so as
to align them. These centres of gravity and the rotation parameters for the patches
need to be encoded and transmitted to the decoder. For intra-frame coding of the
vertex positions, a spectral compression [44,136] method is applied since the vertex
positions are highly correlated spatially. Only around 10-50% of the lowest-frequency



1.5 Variable-connectivity mesh sequences 27

spectral coefficients are kept, with the other values being set to 0, and Huffman
coding [41] is used to encode the quantized set of coefficients. To compress the
colour data per vertex, the authors propose to use either a vector quantization (VQ)
on the (R, G, B) colour vectors, or a simple scalar quantization, and not spectral
compression, since the colour values are not usually strongly correlated spatially with
other colour values. For connectivity compression, the authors employ existing high-
performing static 3D mesh connectivity algorithms, such as Edgebreaker [32]. For
the inter-frame coding, a patch matching approach is proposed to remove the temporal
redundancies. Patch matching is achieved by finding the minimum sum of Euclidean
distances between a patch in the target frame and all the patches in the reference frame.
The residuals between the position and colour vectors in the target patch and their
corresponding vectors in the matched reference patch are then encoded by a vector or
scalar quantization (VQ has generally been found to perform better). Correspondence
data between vertices in the target and reference frames must also be encoded, but
compared to the bitrate for encoding this data in [133], in [135] the bitrate is very
small. Compared to [133,134], for inter-frame geometry coding the method in [135]
has been shown to offer significant rate-distortion improvements.

In [137], the authors present a study on a better bit allocation strategy for their
method in [135]. For the mesh models used in [135], the authors demonstrate in [137]
that for a good visual quality for the reconstructed 3D meshes, as many bits as possible
should be assigned to the vertex positions, while for colour 8-10 bpv per frame seems
sufficient. This is because the quality of the colour reconstruction is highly dependent
on the quality of the geometry reconstruction, as the colour must be coded on top of
lossy geometry. The study in [137] also considers the trade-off in the bit allocations
between the target frames and reference frames for the method in [135]. The authors
conclude that as many bits as possible should be allocated to the reference frames,
while the target frames can be allocated a smaller number of bits (e.g., half the bitrate
of the reference frames) to achieve the same overall visual quality for inter-frame
coding.

More recently, Pavez and Chou [138] propose an alternative representation to
surface meshes: a so-called polygon soup. They claim that such an unstructured set
of triangles, where the triangles are not connected and can overlap, are better at de-
scribing surfaces from real-life captures than point clouds or meshes are on their own.
Polygon soups can be seen as a trade-off between point-clouds and surface meshes.
The authors use an octree encoding to represent the vertices of the reference frames
(i.e., the keyframes). They achieve this by quantizing the vertices (i.e., by voxeliza-
tion) and reordering the quantized vertices by using Morton Codes [139]. Using the
Morton order, they apply the Region-Adaptive Hierarchical Transform [140] (RAHT),
which is a sequence of orthonormal transforms applied to attribute data living on the
leaves of an octree. The output transform coefficients are sorted by decreasing mag-
nitude of weight, quantized by uniform scalar quantization, and entropy coded by
using a Run-Length-Golomb-Rice [141] (RLGR) entropy coder. The authors claim
that compared to static polygon clouds and a fortiori static point clouds, dynamic
polygon clouds can improve color compression by up to 2-3 dB in fidelity, and can



28 CHAPTER 1 Coding of dynamic 3D meshes

improve geometry compression by up to a factor of 2-5 in bitrate. It should be noted
that the method in [138] assumes that time-consistent dynamic polygon clouds can
be constructed in real time, and therefore that the triangles of the polygon soup are
consistent across frames so that there is a correspondence between colors and vertices
within each Group of Frames.

1.5.3 Methods inspired by MPEG V-PCC
In more recent work on TVM compression, solutions that are based on the MPEG
Video-based Point Cloud Coding (V-PCC) standard from the V3C framework [142]
have begun to appear.

Faramarzi et al. [143] propose extending the V-PCC framework to encode dense
meshes with per-vertex colour data. More specifically, they propose to use V-PCC
to encode the mesh geometry and textures, and to encode the connectivity by using
Edgebreaker [32] and TFAN [30]. Since the order of the reconstructed vertices
produced by V-PCC is different to the order of the vertices in the input mesh before
compression, but both Edgebreaker and TFAN rely on having the same vertex ordering
at input and output so that they can traverse the mesh losslessly, the encoder also needs
to encode and transmit the vertex reordering information. Due to this additional coding
burden, the proposed solution performs much worse compared to when using Draco
to encode the same mesh. The authors thus propose an alternative solution, where
vertices and colours are linearly packed into standard video frames, so-called raw
patches in V-PCC. With this second approach, some V-PCC coding steps such as
patch generation, as well as geometry and attribute smoothing, are skipped; therefore,
this solution does not leverage the regular patch packing for more efficient coding
as proposed in V-PCC. In both the proposed frameworks, V-PCC + Edgebreaker is
shown to have better compression performance than V-PCC + TFAN; however, Draco
usually performs better (on average) than either of the proposed solutions using V-
PCC. Moreover, the results in [143] have been demonstrated only for a single frame
for each of the meshes in the chosen test set, so it is not yet clear how the proposed
solutions might work for time-varying mesh sequences.

In [144], the author also proposes an extension of the MPEG V-PCC frame-
work [142] to encode TVMs. Similarly to the case for 3D point clouds, in [144] each
vertex position of a 3D mesh is projected onto a pixel position in a 2D patch image, but
additionally the surface of the 3D mesh is also projected onto the 2D patch projection
plane by using rasterization. This produces a dense image representing the mesh
connectivity, which is suitable for video coding. Occupancy, geometry, and attributes
are encoded as usual by V-PCC. Due to the subdivision into patches and the lossy
compression of vertex positions (e.g., quantization), the reconstructed mesh may have
gaps between patches. To fix this problem, the author uses an algorithm similar to
the mesh zippering approach used in [145], where triangle vertices on the borders of
neighbouring patches are merged. Note that for both [144] and [143], the input mesh
vertex positions must be voxelized (converted to integers) before they can be processed
by the proposed methods. For geometry compression, the method in [144] has been



1.6 Conclusion and future directions 29

shown to be outperformed by Draco in terms of rate-distortion performance, while for
colour compression the performance is comparable (or in some cases a little better)
to colour encoded using HEVC on top of a reconstructed geometry using Draco. The
method in [144] has been designed to work both on meshes with per-vertex colours
and textured meshes.

1.5.4 The MPEG V-Mesh Call for Proposals
The TVM compression methods inspired by MPEG V-PCC were part of Exploration
Experiments that were realized during the standardization of the video-based point
cloud compression standard, V-PCC [142]. These experiments applied the new point
cloud compression standard to the coding of meshes, since both point clouds and
meshes are commonly used in the case of VR/AR and volumetric video. It was
noted that in order to encode the connectivity of the meshes, modifications to the new
standard would be recommended. Due to the interest of several companies in the
mesh data format, the MPEG group decided to issue a Call for Proposals [146] for
TVMs in October 2021. The responses are due in April 2022 and the new standard is
expected to be concluded in October 2023.

1.6 Conclusion and future directions
In this chapter, we first motivated the use of 3D triangular mesh models to represent
animated three-dimensional subjects in the volumetric videos that are fast emerging
as the newest form of multimedia. Unlike earlier animated mesh sequences, which
were generated purely synthetically by computers, the emerging volumetric videos
are produced from real-life captures of moving subjects or objects. With volumetric
videos, as for all previous forms of multimedia (1D audio signals, 2D images, and
2D videos), naturally there is a need for efficient compression algorithms in order to
enable such multimedia to be used in a practical manner. In this chapter, we provided
an overview of the history of compression techniques that have been proposed over
the past few decades for static (single-frame) 3D meshes, followed by compression
algorithms for synthetically-generated dynamic mesh sequences (so-called animated
meshes), and finally for dynamic mesh sequences produced from real-life captures
(so-called time-varying meshes, or TVMs). While we have seen many similarities and
patterns in the compression algorithms proposed across these different categories, it is
clear that the time-varying meshes are still the most difficult to compress. Indeed, even
though research on the compression of such time-varying meshes started more than a
decade ago, it is still rather in its infancy. The most difficult problem in compressing
such data is the lack of correspondences in the connectivity and geometry of the
mesh models across different frames. Tracking algorithms that attempt to find such
correspondences are often costly and time-consuming, and therefore not practical
to use in the case of a standalone TVM codec. More recently, researchers have
begun to propose compression algorithms for TVMs inspired by the recent MPEG
V-PCC standard, but the results are still far from the compression rates achievable



30 CHAPTER 1 Coding of dynamic 3D meshes

for animated meshes. Perhaps the recent MPEG Call for Proposals (CfP) on TVM
compression will inspire a flurry of new and creative research in this direction.

Aside from the inherent challenges of designing new compression algorithms, we
also have a few other roadblocks that stand in the way of progress, most importantly:
(i) the lack of a sufficiently large and variable set of TVM datasets to test on (few
such datasets currently exist, and they are often proprietary to the companies or
institutions that generate them and so can be difficult to acquire); (ii) the fact that
different papers in the literature do not all present results on the same datasets, which
makes it difficult to compare different compression algorithms; (iii) the frequent lack
of sufficient algorithm details in the literature, and/or the lack of available source code
for the proposed algorithms, which often makes it difficult or impossible to reproduce
the results; and (iv) the lack of agreement on common, reliable error metrics that
can be used for the quality assessment of decompressed mesh models and for the
fair comparison of different mesh compression algorithms, and which consistently
correlate well with human perception of error. In order to have a more accurate
idea of where the research on compression of dynamic 3D meshes truly stands, and
therefore to be able to make useful progress, we must also enforce more rigorous
presentations of new algorithms that are published in the literature. Indeed, if we
cannot accurately reproduce a method, or fairly compare different methods, or even
accurately measure the performance of a new method, the usefulness of these methods
is limited as we do not have full control over them.

Perhaps the work presented in this chapter will serve as inspiration for new in-
sights and valuable contributions to the field of dynamic mesh compression, and will
therefore enable us to reproduce increasingly richer multimedia representations of our
world.

Bibliography
[1] M. Zwicker, H. Pfister, J. Van Baar, M. Gross, Surface splatting, in: Proceedings of the 28th annual

conference on Computer graphics and interactive techniques, 2001, pp. 371–378.
[2] W. E. Lorensen, H. E. Cline, Marching cubes: A high resolution 3d surface construction algorithm,

ACM siggraph computer graphics 21 (4) (1987) 163–169.
[3] L. Williams, Pyramidal parametrics, in: Proceedings of the 10th annual conference on Computer

graphics and interactive techniques, 1983, pp. 1–11.
[4] G. Lavoué, 3D Object Processing - Basic Background in 3D Object Processing, John Wiley&Sons,

Ltd, 2008, Ch. 1, pp. 5–43. doi:https://doi.org/10.1002/9780470510773.ch1.
[5] M. Krivokuća, PhD Thesis, Progressive Compression of 3D Mesh Geometry Using Sparse Approx-

imations from Redundant Frame Dictionaries, Department of Electrical and Computer Engineering,
The University of Auckland, New Zealand, 2015.

[6] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak mathematical journal 23 (2) (1973)
298–305.

[7] J. Peng, C.-S. Kim, C.-C. J. Kuo, Technologies for 3d mesh compression: A survey, Journal of
visual communication and image representation 16 (6) (2005) 688–733.

[8] S. Jendrol’, H.-J. Voss, Light subgraphs of graphs embedded in the plane—a survey, Discrete
Mathematics 313 (4) (2013) 406–421. doi:https://doi.org/10.1016/j.disc.2012.11.007.



1.6 Conclusion and future directions 31

[9] M. Ben-Chen, A. Lai Lin, Course on geometry processing algorithms - chapter 2 mesh data structures
(2010).
URL https://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/02_Mesh_

Data_Structures.pdf

[10] L. Kettner, Using generic programming for designing a data structure for polyhedral surfaces,
Computational Geometry 13 (1) (1999) 65–90.

[11] W. Consortium, X3d and vrml, the most widely used 3d formats (2000).
URL https://www.web3d.org/x3d-vrml-most-widely-used-3d-formats

[12] P. Bourke, Obj - polygonal file format.
URL http://paulbourke.net/dataformats/obj/

[13] P. Bourke, Ply - polygonal file format.
URL http://paulbourke.net/dataformats/ply/

[14] J. Rossignac, A. Safonova, A. Szymczak, Edgebreaker on a corner table: A simple technique for
representing and compressing triangulated surfaces, in: Hierarchical and geometrical methods in
scientific visualization, Springer, 2003, pp. 41–50.

[15] W. T. Tutte, A census of planar triangulations, Canadian Journal of Mathematics 14 (1962) 21–38.
[16] A. Maglo, G. Lavoué, F. Dupont, C. Hudelot, 3d mesh compression: Survey, comparisons, and

emerging trends, ACM Computing Surveys (CSUR) 47 (3) (2015) 1–41.
[17] P. Alliez, C. Gotsman, Recent advances in compression of 3d meshes, Advances in multiresolution

for geometric modelling (2005) 3–26.
[18] Google, Draco 3d data compression.

URL https://google.github.io/draco/

[19] K. Mammou, Open 3d graphics compression (2013).
URL https://github.com/KhronosGroup/glTF/wiki/Open-3D-Graphics-Compression

[20] M. Geelnard, Openctm (2010).
URL http://openctm.sourceforge.net/

[21] V. Vidal, E. Lombardi, M. Tola, F. Dupont, G. Lavoué, Mepp2: a generic platform for processing
3d meshes and point clouds, in: EUROGRAPHICS 2020 (Short Paper), 2020.

[22] openGL, opengl primitives (2000).
URL https://www.khronos.org/opengl/wiki/Primitive#Triangle_primitives

[23] Microsoft, Directx primitives (2000).
URL https://docs.microsoft.com/en-us/windows/win32/direct3d9/primitives

[24] M. Deering, Geometry compression, in: Proceedings of the 22nd annual conference on Computer
graphics and interactive techniques, 1995, pp. 13–20.

[25] M. M. Chow, Optimized geometry compression for real-time rendering, IEEE, 1997.
[26] C. L. Bajaj, V. Pascucci, G. Zhuang, Single resolution compression of arbitrary triangular meshes

with properties, Computational Geometry 14 (1-3) (1999) 167–186.
[27] G. Taubin, J. Rossignac, Geometric compression through topological surgery, ACM Transactions

on Graphics (TOG) 17 (2) (1998) 84–115.
[28] P. Diaz-Gutierrez, M. Gopi, R. Pajarola, Hierarchyless simplification, stripification and compression

of triangulated two-manifolds, in: Computer Graphics Forum, Vol. 24, Blackwell Publishing, Inc
Oxford, UK and Boston, USA, 2005, pp. 457–467.

[29] C. Touma, C. Gotsman, Triangle mesh compression, in: Proceedings-Graphics Interface, Canadian
Information Processing Society, 1998, pp. 26–34.

[30] K. Mamou, T. Zaharia, F. Prêteux, Tfan: A low complexity 3d mesh compression algorithm,
Computer Animation and Virtual Worlds 20 (2-3) (2009) 343–354.

[31] S. Gumhold, W. Straßer, Real time compression of triangle mesh connectivity, in: Proceedings of
the 25th annual conference on Computer graphics and interactive techniques, 1998, pp. 133–140.



32 CHAPTER 1 Coding of dynamic 3D meshes

[32] J. Rossignac, Edgebreaker: Connectivity compression for triangle meshes, IEEE transactions on
visualization and computer graphics 5 (1) (1999) 47–61.

[33] A. Szymczak, Optimized edgebreaker encoding for large and regular triangle meshes, The Visual
Computer 19 (4) (2003) 271–278.

[34] J. Rossignac, 3d compression made simple: Edgebreaker with zipandwrap on a corner-table, in:
Proceedings International Conference on Shape Modeling and Applications, IEEE, 2001, pp. 278–
283.

[35] A. Szymczak, J. Rossignac, D. King, Piecewise regular meshes: Construction and compression,
Graphical Models 64 (3-4) (2002) 183–198.

[36] M. Attene, B. Falcidieno, M. Spagnuolo, J. Rossignac, Swingwrapper: Retiling triangle meshes for
better edgebreaker compression, ACM Transactions on Graphics (TOG) 22 (4) (2003) 982–996.

[37] H. Hoppe, Progressive meshes, in: Proceedings of the 23rd annual conference on Computer graphics
and interactive techniques, 1996, pp. 99–108.

[38] G. Taubin, A. Guéziec, W. Horn, F. Lazarus, Progressive forest split compression, in: Proceedings
of the 25th annual conference on Computer graphics and interactive techniques, 1998, pp. 123–132.

[39] W. J. Schroeder, J. A. Zarge, W. E. Lorensen, Decimation of triangle meshes, in: Proceedings of
the 19th annual conference on Computer graphics and interactive techniques, 1992, pp. 65–70.

[40] D. Cohen-Or, D. Levin, O. Remez, Progressive compression of arbitrary triangular meshes, in:
IEEE visualization, Vol. 99, 1999, pp. 67–72.

[41] R. Gonzalez, R. Woods, Digital Image Processing, Chapter 8: Image Compression, Upper Saddle
River, New Jersey: Pearson Education, Inc., 2008, pp. 525–626.

[42] H. Lee, P. Alliez, M. Desbrun, Angle-analyzer: A triangle-quad mesh codec, in: Computer Graphics
Forum, Vol. 21, Wiley Online Library, 2002, pp. 383–392.

[43] L. Vasa, G. Brunnett, Exploiting connectivity to improve the tangential part of geometry prediction,
IEEE transactions on visualization and computer graphics 19 (9) (2013) 1467–1475.

[44] Z. Karni, C. Gotsman, Spectral compression of mesh geometry, in: Proceedings of the 27th annual
conference on Computer graphics and interactive techniques, 2000, pp. 279–286.

[45] X. Gu, S. J. Gortler, H. Hoppe, Geometry images, in: Proceedings of the 29th annual conference
on Computer graphics and interactive techniques, 2002, pp. 355–361.

[46] O. Devillers, P.-M. Gandoin, Geometric compression for interactive transmission, in: Proceedings
Visualization 2000. VIS 2000 (Cat. No. 00CH37145), IEEE, 2000, pp. 319–326.

[47] J. Peng, C.-C. J. Kuo, Geometry-guided progressive lossless 3d mesh coding with octree (ot)
decomposition, in: ACM SIGGRAPH 2005 Papers, 2005, pp. 609–616.

[48] M. Isenburg, J. Snoeyink, Compressing texture coordinates with selective linear predictions, in:
Proceedings Computer Graphics International 2003, IEEE, 2003, pp. 126–131.

[49] L. Váša, G. Brunnett, Efficient encoding of texture coordinates guided by mesh geometry, in:
Computer Graphics Forum, Vol. 33, Wiley Online Library, 2014, pp. 25–34.

[50] F. Caillaud, V. Vidal, F. Dupont, G. Lavoué, Progressive compression of arbitrary textured meshes,
in: Computer Graphics Forum, Vol. 35, Wiley Online Library, 2016, pp. 475–484.

[51] J.-H. Ahn, C.-S. Kim, Y.-S. Ho, Predictive compression of geometry, color and normal data of
3-d mesh models, IEEE Transactions on Circuits and Systems for Video Technology 16 (2) (2006)
291–299.

[52] Z. H. Cigolle, S. Donow, D. Evangelakos, M. Mara, M. McGuire, Q. Meyer, A survey of efficient
representations for independent unit vectors, Journal of Computer Graphics Techniques 3 (2) (2014).

[53] L. Chiariglione, The MPEG representation of digital media, Springer Science & Business Media,
2011.

[54] ISO/IEC JTC 1/SC 29/WG 11, ISO/IEC 14496 2:2004, Information technology – Coding of audio-
visual objects – Part 2: Visual (2004).



1.6 Conclusion and future directions 33

URL https://www.iso.org/standard/73025.html

[55] A. Khodakovsky, P. Schröder, W. Sweldens, Progressive geometry compression, in: Proceedings of
the 27th annual conference on Computer graphics and interactive techniques, 2000, pp. 271–278.

[56] I. A. Salomie, A. Munteanu, A. Gavrilescu, G. Lafruit, P. Schelkens, R. Deklerck, J. Cornelis,
Meshgrid-a compact, multiscalable and animation-friendly surface representation, IEEE transac-
tions on circuits and systems for video technology 14 (7) (2004) 950–966.

[57] J. Royan, R. Balter, C. Bouville, Hierarchical representation of virtual cities for progressive trans-
mission over networks, in: Third International Symposium on 3D Data Processing, Visualization,
and Transmission (3DPVT’06), Citeseer, 2006, pp. 432–439.

[58] ISO/IEC JTC 1/SC 29, Information technology — Coding of audio-visual objects — Part 16:
Animation Framework eXtension (AFX) (2011).
URL https://www.iso.org/standard/57367.html?browse=tc

[59] E. S. Jang, S. Lee, B. Koo, D. Kim, K. Son, Fast 3d mesh compression using shared vertex analysis,
ETRI journal 32 (1) (2010) 163–165.

[60] K. Group, Directx primitives (2000).
URL https://www.khronos.org/gltf/

[61] A. Collet, M. Chuang, P. Sweeney, D. Gillett, D. Evseev, D. Calabrese, H. Hoppe, A. Kirk,
S. Sullivan, High-quality streamable free-viewpoint video, ACM Transactions on Graphics (ToG)
34 (4) (2015) 1–13.

[62] H. Li, B. Adams, L. J. Guibas, M. Pauly, Robust single-view geometry and motion reconstruction,
ACM Transactions on Graphics (ToG) 28 (5) (2009) 1–10.

[63] E. De Aguiar, C. Stoll, C. Theobalt, N. Ahmed, H.-P. Seidel, S. Thrun, Performance capture from
sparse multi-view video, in: ACM SIGGRAPH 2008 papers, 2008, pp. 1–10.

[64] M. Zollhöfer, M. Nießner, S. Izadi, C. Rehmann, C. Zach, M. Fisher, C. Wu, A. Fitzgibbon, C. Loop,
C. Theobalt, et al., Real-time non-rigid reconstruction using an rgb-d camera, ACM Transactions
on Graphics (ToG) 33 (4) (2014) 1–12.

[65] F. Prada, M. Kazhdan, M. Chuang, A. Collet, H. Hoppe, Spatiotemporal atlas parameterization for
evolving meshes, ACM Transactions on Graphics (TOG) 36 (4) (2017) 1–12.

[66] J. Dvořák, P. Vaněček, L. Váša, Towards understanding time varying triangle meshes, in: Interna-
tional Conference on Computational Science, Springer, 2021, pp. 45–58.

[67] J. E. Lengyel, Compression of time-dependent geometry, in: Proceedings of the 1999 symposium
on Interactive 3D graphics, 1999, pp. 89–95.

[68] S. Gupta, K. Sengupta, A. A. Kassim, Compression of dynamic 3d geometry data using iterative
closest point algorithm, Computer Vision and Image Understanding 87 (1-3) (2002) 116–130.

[69] G. Collins, A. Hilton, A rigid transform basis for animation compression and level of detail, in:
Vision, Video, and Graphics, 2005, pp. 21–28.

[70] M. Sattler, R. Sarlette, R. Klein, Simple and efficient compression of animation sequences, in:
Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation,
2005, pp. 209–217.

[71] R. Amjoun, R. Sondershaus, W. Straßer, Compression of complex animated meshes, in: Computer
Graphics International Conference, Springer, 2006, pp. 606–613.

[72] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, A. Y. Wu, An efficient
k-means clustering algorithm: Analysis and implementation, IEEE transactions on pattern analysis
and machine intelligence 24 (7) (2002) 881–892.

[73] K. Mamou, T. Zaharia, F. Prêteux, A skinning approach for dynamic 3d mesh compression, Com-
puter Animation and Virtual Worlds 17 (3-4) (2006) 337–346.

[74] N. Stefanoski, X. Liu, P. Klie, J. Ostermann, Scalable linear predictive coding of time-consistent 3d
mesh sequences, in: 2007 3DTV Conference, IEEE, 2007, pp. 1–4.



34 CHAPTER 1 Coding of dynamic 3D meshes

[75] K. Mamou, T. Zaharia, F. Prêteux, N. Stefanoski, J. Ostermann, Frame-based compression of
animated meshes in mpeg-4, in: 2008 IEEE International Conference on Multimedia and Expo,
IEEE, 2008, pp. 1121–1124.

[76] G. Luo, Z. Deng, X. Zhao, X. Jin, W. Zeng, W. Xie, H. Seo, Spatio-temporal segmentation based
adaptive compression of dynamic mesh sequences, ACM Transactions on Multimedia Computing,
Communications, and Applications (TOMM) 16 (1) (2020) 1–24.

[77] M. Alexa, W. Müller, Representing animations by principal components, in: Computer Graphics
Forum, Vol. 19, Wiley Online Library, 2000, pp. 411–418.

[78] Z. Karni, C. Gotsman, Compression of soft-body animation sequences, Computers & Graphics
28 (1) (2004) 25–34.

[79] G. Luo, F. Cordier, H. Seo, Compression of 3d mesh sequences by temporal segmentation, Computer
Animation and Virtual Worlds 24 (3-4) (2013) 365–375.

[80] R. Amjoun, W. Straßer, Efficient compression of 3d dynamic mesh sequences, journal of WSCG
(2007).

[81] C.-K. Kao, B.-S. Jong, T.-W. Lin, Representing progressive dynamic 3d meshes and applications,
in: 2010 18th Pacific Conference on Computer Graphics and Applications, IEEE, 2010, pp. 5–13.

[82] L. Váša, V. Skala, Coddyac: Connectivity driven dynamic mesh compression, in: 2007 3DTV
Conference, IEEE, 2007, pp. 1–4.

[83] L. Váša, V. Skala, Cobra: Compression of the basis for pca represented animations, in: Computer
Graphics Forum, Vol. 28, Wiley Online Library, 2009, pp. 1529–1540.

[84] L. Váša, V. Skala, Geometry-driven local neighbourhood based predictors for dynamic mesh com-
pression, in: Computer Graphics Forum, Vol. 29, Wiley Online Library, 2010, pp. 1921–1933.

[85] L. Váša, Optimised mesh traversal for dynamic mesh compression, Graphical Models 73 (5) (2011)
218–230.

[86] L. Váša, S. Marras, K. Hormann, G. Brunnett, Compressing dynamic meshes with geometric
laplacians, in: Computer Graphics Forum, Vol. 33, Wiley Online Library, 2014, pp. 145–154.

[87] L. Váša, J. Dvořák, Error propagation control in laplacian mesh compression, in: Computer Graphics
Forum, Vol. 37, Wiley Online Library, 2018, pp. 61–70.

[88] A. S. Lalos, A. A. Vasilakis, A. Dimas, K. Moustakas, Adaptive compression of animated meshes
by exploiting orthogonal iterations, The Visual Computer 33 (6) (2017) 811–821.

[89] L. L. Ibarria, J. R. Rossignac, Dynapack: space-time compression of the 3d animations of triangle
meshes with fixed connectivity, Tech. rep., Georgia Institute of Technology (2003).

[90] J. Zhang, C. B. Owen, Octree-based animated geometry compression, in: Proceedings of the IEEE
Data Compression Conference, 2004, pp. 508–520.

[91] J. Zhang, C. B. Owen, Octree-based animated geometry compression, Computers & Graphics 31 (3)
(2007) 463–479.

[92] K. Muller, A. Smolic, M. Kautzner, P. Eisert, T. Wiegand, Predictive compression of dynamic 3d
meshes, in: IEEE International Conference on Image Processing 2005, Vol. 1, IEEE, 2005, pp.
I–621.

[93] D. Marpe, H. Schwarz, T. Wiegand, Context-based adaptive binary arithmetic coding in the h.
264/avc video compression standard, IEEE Transactions on circuits and systems for video technology
13 (7) (2003) 620–636.

[94] K. Müller, A. Smolic, M. Kautzner, P. Eisert, T. Wiegand, Rate-distortion-optimized predictive
compression of dynamic 3d mesh sequences, Signal Processing: Image Communication 21 (9)
(2006) 812–828.

[95] R. Amjoun, W. Straßer, Single-rate near lossless compression of animated geometry, Computer-
Aided Design 41 (10) (2009) 711–718.

[96] N. Stefanoski, J. Ostermann, Spc: fast and efficient scalable predictive coding of animated meshes,



1.6 Conclusion and future directions 35

in: Computer Graphics Forum, Vol. 29, Wiley Online Library, 2010, pp. 101–116.
[97] M. O. Bici, G. B. Akar, Improved prediction methods for scalable predictive animated mesh

compression, Journal of Visual Communication and Image Representation 22 (7) (2011) 577–589.
[98] J.-K. Ahn, Y. J. Koh, C.-S. Kim, Efficient fine-granular scalable coding of 3d mesh sequences, IEEE

Transactions on Multimedia 15 (3) (2012) 485–497.
[99] J. Lounsbery, PhD Thesis, Multiresolution Analysis for Surfaces of Arbitrary Topological Type,

Department of Computer Science and Engineering, University of Washington, Seattle, Washington,
USA, 1994.

[100] M. Lounsbery, T. D. DeRose, J. Warren, Multiresolution analysis for surfaces of arbitrary topological
type, ACM Transactions on Graphics (TOG) 16 (1) (1997) 34–73.

[101] C. Loop, Master of Science Thesis, Smooth Subdivision Surfaces Based on Triangles, Department
of Mathematics, The University of Utah, Salt Lake City, UT, USA, 1987.

[102] A. Khodakovsky, I. Guskov, Compression of normal meshes, in: Geometric modeling for scientific
visualization, Springer, 2004, pp. 189–206.

[103] J.-H. Yang, C.-S. Kim, S.-U. Lee, Progressive coding of 3d dynamic mesh sequences using spa-
tiotemporal decomposition, in: 2005 IEEE International Symposium on Circuits and Systems,
IEEE, 2005, pp. 944–947.

[104] J.-H. Yang, C.-S. Kim, S.-U. Lee, Semi-regular representation and progressive compression of 3-d
dynamic mesh sequences, IEEE Transactions on Image Processing 15 (9) (2006) 2531–2544.

[105] I. Guskov, A. Khodakovsky, Wavelet compression of parametrically coherent mesh sequences, in:
Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation,
2004, pp. 183–192.

[106] J.-W. Cho, M.-S. Kim, S. Valette, H.-Y. Jung, R. Prost, 3-d dynamic mesh compression using
wavelet-based multiresolution analysis, in: 2006 International Conference on Image Processing,
IEEE, 2006, pp. 529–532.

[107] I. Guskov, W. Sweldens, P. Schröder, Multiresolution signal processing for meshes, in: Proceedings
of the 26th annual conference on Computer graphics and interactive techniques, 1999, pp. 325–334.

[108] I. Guskov, Multivariate subdivision schemes and divided differences, Preprint, Princeton University
1 (1998) 998.

[109] H. Q. Nguyen, P. A. Chou, Y. Chen, Compression of human body sequences using graph wavelet
filter banks, in: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), IEEE, 2014, pp. 6152–6156.

[110] B. Yang, Z. Jiang, Y. Tian, J. Shangguan, C. Song, Y. Guo, M. Xu, A novel dynamic mesh sequence
compression framework for progressive streaming, in: 2017 International Conference on Virtual
Reality and Visualization (ICVRV), IEEE, 2017, pp. 49–54.

[111] B. Yang, Z. Jiang, J. Shangguan, F. W. Li, C. Song, Y. Guo, M. Xu, Compressed dynamic mesh
sequence for progressive streaming, Computer Animation and Virtual Worlds 30 (6) (2019) e1847.

[112] S. K. Narang, A. Ortega, Compact support biorthogonal wavelet filterbanks for arbitrary undirected
graphs, IEEE transactions on signal processing 61 (19) (2013) 4673–4685.

[113] J. D. J. G. Leandro, R. M. Cesar Jr, R. S. Feris, Shape analysis using the spectral graph wavelet
transform, in: 2013 IEEE 9th International Conference on e-Science, IEEE, 2013, pp. 307–316.

[114] H. M. Briceno, P. V. Sander, L. McMillan, S. Gortler, H. Hoppe, Geometry videos, in: Eurograph-
ics/SIGGRAPH symposium on computer animation (SCA), Eurographics Association, 2003.

[115] P. V. Sander, S. Gortler, J. Snyder, H. Hoppe, Signal-specialized parameterization, in: Proceedings
of the Thirteenth Eurographics Workshop on Rendering, Eurographics Association/Association for
Computing Machinery, 2002.

[116] K. Mamou, T. Zaharia, F. Prêteux, Multi-chart geometry video: A compact representation for
3d animations, in: Third International Symposium on 3D Data Processing, Visualization, and



36 CHAPTER 1 Coding of dynamic 3D meshes

Transmission (3DPVT’06), IEEE, 2006, pp. 711–718.
[117] K. Zhou, J. Synder, B. Guo, H.-Y. Shum, Iso-charts: stretch-driven mesh parameterization using

spectral analysis, in: Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on
Geometry processing, 2004, pp. 45–54.

[118] B. Vallet, B. Lévy, Spectral geometry processing with manifold harmonics, in: Computer Graphics
Forum, Vol. 27, Wiley Online Library, 2008, pp. 251–260.

[119] C. Wang, Y. Liu, X. Guo, Z. Zhong, B. Le, Z. Deng, Spectral animation compression, Journal of
Computer Science and Technology 30 (3) (2015) 540–552.

[120] C. Chen, Q. Xia, S. Li, H. Qin, A. Hao, Compressing animated meshes with fine details using local
spectral analysis and deformation transfer, The Visual Computer 36 (5) (2020) 1029–1042.

[121] E. S. Jang, J. D. Kim, S. Y. Jung, M.-J. Han, S. O. Woo, S.-J. Lee, Interpolator data compression for
mpeg-4 animation, IEEE transactions on Circuits and Systems for Video Technology 14 (7) (2004)
989–1008.

[122] O. Petňík, L. Váša, Improvements of mpeg-4 standard famc for efficient 3d animation compression,
in: 2011 3DTV Conference: The True Vision-Capture, Transmission and Display of 3D Video
(3DTV-CON), IEEE, 2011, pp. 1–4.

[123] T. Matsuyama, X. Wu, T. Takai, T. Wada, Real-time dynamic 3-d object shape reconstruction and
high-fidelity texture mapping for 3-d video, IEEE Transactions on Circuits and Systems for Video
Technology 14 (3) (2004) 357–369. doi:10.1109/TCSVT.2004.823396.

[124] J. Starck, A. Hilton, Surface capture for performance-based animation, IEEE Computer Graphics
and Applications 27 (3) (2007) 21–31. doi:10.1109/MCG.2007.68.

[125] H. Habe, Y. Katsura, T. Matsuyama, Skin-off: representation and compression scheme for 3d video,
in: Picture Coding Symposium, 2004, pp. 301–306.

[126] S.-R. Han, T. Yamasaki, K. Aizawa, 3d video compression based on extended block matching
algorithm, in: 2006 International Conference on Image Processing, IEEE, 2006, pp. 525–528.

[127] ISO/IEC JTC 1/SC 29/WG 7, Use cases for Mesh Coding (April 2021).
[128] J. Hou, L.-P. Chau, Y. He, N. Magnenat-Thalmann, A novel compression framework for 3d time-

varying meshes, in: 2014 IEEE International Symposium on Circuits and Systems (ISCAS), 2014,
pp. 2161–2164. doi:10.1109/ISCAS.2014.6865596.

[129] D. T. Quynh, Y. He, X. Chen, J. Xia, Q. Sun, S. C. Hoi, Modeling 3d articulated motions with
conformal geometry videos (cgvs), in: Proceedings of the 19th ACM International Conference
on Multimedia, MM ’11, Association for Computing Machinery, New York, NY, USA, 2011, p.
383–392. doi:10.1145/2072298.2072349.

[130] J. Xia, I. Garcia, Y. He, S.-Q. Xin, G. Patow, Editable polycube map for gpu-based subdivision
surfaces, in: Symposium on Interactive 3D Graphics and Games, Association for Computing
Machinery, New York, NY, USA, 2011, p. 151–158. doi:10.1145/1944745.1944771.

[131] N. Halko, P.-G. Martinsson, J. A. Tropp, Finding structure with randomness: Probabilistic algo-
rithms for constructing approximate matrix decompositions, SIAM review 53 (2) (2011) 217–288.

[132] T. Wiegand, G. J. Sullivan, G. Bjontegaard, A. Luthra, Overview of the h.264/avc video coding
standard, IEEE Transactions on circuits and systems for video technology 13 (7) (2003) 560–576.

[133] S.-R. Han, T. Yamasaki, K. Aizawa, Time-varying mesh compression using an extended block
matching algorithm, IEEE Transactions on Circuits and Systems for Video Technology 17 (11)
(2007) 1506–1518.

[134] S.-R. Han, T. Yamasaki, K. Aizawa, Geometry compression for time-varying meshes using coarse
and fine levels of quantization and run-length encoding, in: 2008 15th IEEE International Conference
on Image Processing, 2008, pp. 1045–1048. doi:10.1109/ICIP.2008.4711937.

[135] T. Yamasaki, K. Aizawa, Patch-based compression for time-varying meshes, in: 2010 IEEE Inter-
national conference on image processing, IEEE, 2010, pp. 3433–3436.



1.6 Conclusion and future directions 37

[136] . R. Ohbuchi, . A. Mukaiyama, . S. Takahashi, A frequency-domain approach to watermarking 3d
shapes, in: Computer Graphics Forum, Vol. 21, Wiley Online Library, 2002, pp. 373–382.

[137] L. Yamasaki, K. Aizawa, Bit allocation of vertices and colors for patch-based coding in time-
varying meshes, in: 28th Picture Coding Symposium, 2010, pp. 162–165. doi:10.1109/PCS.

2010.5702449.
[138] E. Pavez, P. A. Chou, Dynamic polygon cloud compression, in: 2017 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), 2017, pp. 2936–2940. doi:10.1109/

ICASSP.2017.7952694.
[139] G. M. Morton, A computer oriented geodetic data base and a new technique in file sequencing,

Tech. rep. (1966).
[140] R. L. De Queiroz, P. A. Chou, Compression of 3d point clouds using a region-adaptive hierarchical

transform, IEEE Transactions on Image Processing 25 (8) (2016) 3947–3956.
[141] H. S. Malvar, Adaptive run-length/golomb-rice encoding of quantized generalized gaussian sources

with unknown statistics, in: Data Compression Conference (DCC’06), IEEE, 2006, pp. 23–32.
[142] ISO/IEC JTC 1/SC 29, Information technology — Coded representation of immersive media — Part

5: Visual volumetric video-based coding (V3C) and video-based point cloud compression (V-PCC)
(2021).
URL https://www.iso.org/standard/73025.html

[143] E. Faramarzi, R. Joshi, M. Budagavi, Mesh coding extensions to mpeg-i v-pcc, in: 2020 IEEE
22nd International Workshop on Multimedia Signal Processing (MMSP), 2020, pp. 1–5. doi:

10.1109/MMSP48831.2020.9287057.
[144] D. B. Graziosi, Video-based dynamic mesh coding, in: 2021 IEEE International Conference on

Image Processing (ICIP), IEEE, 2021, pp. 3133–3137.
[145] G. Turk, M. Levoy, Zippered polygon meshes from range images, in: Proceedings of the 21st Annual

Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’94, Association for
Computing Machinery, New York, NY, USA, 1994, p. 311–318. doi:10.1145/192161.192241.

[146] ISO/IEC JTC 1/SC 29/WG 7, CfP for Dynamic Mesh Coding (2021).


