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NF-PCAC: NORMALIZING FLOW BASED POINT CLOUD ATTRIBUTE COMPRESSION
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ABSTRACT

Learning-based point cloud (PC) compression is a promis-
ing research avenue to reduce the transmission and storage
costs for PC applications. Existing learning-based methods to
compress PCs have mainly focused on geometry and employ
variational autoencoders to learn compact signal represen-
tations. However, autoencoders leverage low-dimensional
bottlenecks that limit the maximum reconstruction quality,
even at high bitrates. In this paper, we propose a differ-
ent and novel approach to compress PC attributes by using
normalizing flows. Since normalizing flows model invert-
ible transforms, the proposed approach can achieve better
reconstruction quality than variational autoencoders over a
large range of bitrates. Our Normalizing Flow-based Point
Cloud Attribute Compression (NF-PCAC) outperforms pre-
vious learning-based methods for attribute compression, and
has comparable performance as G-PCC v.14, showing the
potential of this scheme for PC compression.

Index Terms— Point clouds, Learning-Based, Compres-
sion, Attributes, Normalizing Flow

1. INTRODUCTION

In the past few years, video content consumption has been
evolving towards immersive formats [1], in particular for en-
tertainment. For example, the most recent Olympic Games in
Tokyo (2021) featured a 3D replay that brought the spectator
closer to the action. Video games new trend is using virtual
reality goggles and devices to reproduce 3D worlds and make
the experience as immersive as possible. In this context, Point
Clouds (PCs) are one of the most popular volumetric repre-
sentations. PCs are a set of unordered points in space that
contain the geometry information, the spatial location of the
points in the z, y and z axes, and the associated attribute in-
formation, in most cases, color. However, PCs can contain
millions of points and are thus expensive to store and trans-
mit. For this reason, to make PCs a viable option to diffuse
3D content, compression is necessary.

The field of PC compression has significantly advanced
in the past few years, notably thanks to the standardization
efforts in MPEG [2]. In addition to conventional coding tech-
niques, recently a number of learning-based techniques have

been proposed for PCs [3]. However, the majority of these
techniques focus on the compression of the PC geometry, but
not the attributes. In addition, existing methods use varia-
tional autoencoders to learn low-dimensional representations
for compression. While this is very effective at low bitrates,
the intrisically lossy nature of autoencoders limits the maxi-
mum reconstruction quality at higher bitrates.

In this paper, we propose the first end-to-end learning
based approach that makes use of a normalizing flow archi-
tecture to encode the PC attributes. We call the proposed
approach NF-PCAC for Normalizing Flow Point Cloud At-
tribute Compression. Normalizing flows are neural networks
that model invertible transforms. In contrast to variational
autoencoders (VAE), these architectures do not have a low-
dimensional bottleneck and can, in principle, achieve lossless
reconstructions. We adapt the 2D normalizing flow architec-
ture to take into consideration the 3D nature and the sparsity
of PCs and we add some approximations to obtain a better
trade off between quality and bitrate. Thus our architecture is
no longer fully invertible, but produces state-of-the-art perfor-
mance and provides higher coding gains than existing learn-
ing based attribute compression approaches. It is also the
first learning based approach that achieves comparable and
in some cases, even better results than G-PCC for attributes.

2. RELATED WORK

The baseline for today’s research on PC static compression
is the Geometry-based PC Compression (G-PCC) algorithm
standardized by MPEG [2]. G-PCC encodes the geometry
and attributes separately. Geometry coding uses an octree ap-
proach to code the PC, whereas attribute coding is performed
by a Region Adaptive Hierarchical Transform (RAHT) [5].

Following the recent success of learning-based coding for
2D images (e.g., [6]), variational autoencoders have been also
applied to the compression of PCs, in particular for geometry.
In [7], the authors use 3D voxel convolutions, and cast the
decoding problem as one of classifying which voxels are non-
empty. This initial architecture led to some extensions and
improvements, [8, 9]. In particular, [10] introduces the use of
sparse convolutions for PC compression, allowing the input
to be the entire PC instead of just a partition.

Learning-based coding of PC attributes has been less ex-
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Fig. 1: Proposed PC attribute coding architecture based on normalizing flows. Compared to a 2D normalizing flow architecture
for image coding [4], our scheme is adapted to compress PC attributes: all the convolutions are replaced by sparse convolutions,
the squeeze layer is replaced by our novel 3D squeeze layer. The PC goes through a feature enhancement block, a normalizing
flow module, a channel average and the attention layers before being coded.

plored. In [11], attributes are interpreted as a signal over
a 2D manifold and are coded using a conventional image
codec. However, this mapping fails when the underlying PC
geometry is complex, limiting the coding performance. Deep-
PCAC [12] employs second-order point convolutions instead
of voxel-based convolution, inspired by [13], and a similar
architecture to [6] to code the color attributes of PCs. A lim-
itation of point-based convolution is the inability to capture
spatial dependencies, which leads to relatively poor coding
performance. A recent method proposed in [14] consists of
an extended version of [10] using a similar architecture and
sparse voxel convolutions to compress the attributes of PCs.
The use of sparse convolutions is interesting for PCs learning
based tasks because it can help overcome the limitations of
available memory as well as avoid the dilation of the fea-
tures to empty spaces [15]. This work is currently achieving
state-of-the-art results for learning-based attribute coding.

Normalizing flow architectures have initially been pro-
posed as generative models [16] and later applied to image
compression [17]. An interesting property of normalizing
flows is that they produce invertible representations, similar
to the orthogonal transforms used in conventional coding. To
obtain competitive performance at low bitrates, the authors of
[4] introduce attentive squeezing layers to reduce the dimen-
sionality of the latent representations and increase the com-
pression ratio of images. In this paper, we adapt this architec-
ture to the case of 3D point cloud attributes.

3. PROPOSED METHOD
3.1. Normalizing Flow PC Attribute Compression

We propose a novel method to compress PC attributes using
a normalizing flow based architecture. Normalizing flow ar-
chitectures transform the input signal using a diffeomorphic
and orientation preserving function [18]. A function is dif-
feomorphic if it is completely invertible and differentiable. In
other words, the transformation necessary to decode the orig-
inal data from the latent space consists in inverting the op-

erations of the encoder, with the same trained weights. To
obtain a bijective mapping, the latent space must have the
same dimension as the original data space. This is in contrast
with variational autoencoders, where an information bottle-
neck forces the latent space to be low-dimensional. Initially
proposed for image generation [16], normalizing flows have
been less popular for lossy image compression [17, 4], where
the main paradigm is still VAE [6]. Nevertheless, normal-
izing flows have the potential to provide better performance
than VAE at higher bitrates, avoiding or reducing the typical
quality saturation in autoencoders.

To achieve good compression performance over a large
range of bitrates, we propose the NF-PCAC scheme depicted
in Figure 1, which extends the architecture presented in [4]
to point cloud attributes. It contains a feature enhancement
block, an invertible neural network (INN), a channel aver-
age block and an attentive layer, followed by a hyperprior
model [19] for the entropy coding of the coefficients in the
latent space.

The feature enhancement block, composed of dense
blocks as defined in [20], has the goal to help extract more
non-linear features from the original PC. The use of dense
blocks with skip connections helps preserve the original fea-
tures in the output of the block, and also transforms the signal
so that it can be better encoded. We extend this block to use
sparse 3D convolutions instead of 2D regular convolutions
to increase memory efficiency and avoid noise in feature
computation due to convolutions with empty voxels.

The INN is the core of the architecture as it computes the
latent features. It is composed by completely invertible oper-
ations, meaning that the output of this block when processed
by the reverse operations will result in the original input in a
lossless fashion. It is constituted of 3 repetitions of the se-
quence: 3D voxel squeeze layer, sparse 1 x 1 convolution and
sparse coupling layers. The coupling layers consist on a se-
quence of operations as defined in [16], designed to obtain a
bijective function that is flexible and easy to invert.

Following the INN and the average channel layer (see be-



low), we have an attentive layer [21] that consists of convolu-
tions followed by a sigmoid function with the goal of helping
the architecture focus on more important areas in the PC. For
the entropy modeling, we use a hyperprior to generate a mean
and a scale for the distribution such as [6, 19].

3.2. 3D squeeze layer

The normalizing flow architecture needs to be adapted to take
into account the sparse nature of 3D PCs. A key module in the
architecture is the squeeze layer to effectively reduce the spa-
tial dimension and increase the number of channels, without
changing the overall dimensionality of the feature space. This
step is essential to increase the receptive field for the convo-
lutions, and the squeeze operation serves this purpose in the
normalizing flow, converting spatial information into channel
information and using it for subsequent convolutions.

The squeezing operation trades spatial size for channels
by implementing a masking scheme for 2D images [16],
where the features in a 2 x 2 neighborhood are all aggre-
gated as channels of the first spatial location, reducing the
number of pixels by a factor of 4 and increasing the num-
ber of features also by a factor of 4. The extension for 3D
data comes naturally by just increasing the neighborhood to a
2 x 2 x 2 region, reducing the number of pixels by a factor of
8 and increasing the number of channels by the same factor
(see Figure 2). However, this naive extension in a sparse
PC would generate empty channels, impacting subsequent
convolutions, and increasing the number of coefficients, since
we would add new voxels to the original data. To reduce the
number of coefficients, a channel averaging layer is typically
used after the normalizing flow blocks. This layer reduces
the number of channels by a factor of 2 by taking the average
values of these channels. However, by using this strategy
alone in the architecture we worsen the problems caused by
the empty channels produced in the squeezing layers. These
empty channels cause the learning process to suffer a big
slowdown, since they do not contribute any information.

To solve this problem we develop a 3D voxel squeeze
layer, derived from the squeezing operation presented in [16].
The newly proposed layer uses artificially filled points in the
PC to replace the zeros and improve the convergence of the
algorithm, reducing at the same time the artifacts due to fil-
tering across empty voxels. Specifically, we propose to fill
the empty voxels using the average attribute values of all the
occupied voxel neighbors in the region to be squeezed. An
example illustration of empty voxel filling is given in Figure
2b, where we have an average value of (1+4+6+7)/4 = 4.5
and the output of the squeeze layer is displayed on the right
side of the arrow in Figure 2b.

4. EXPERIMENTS AND RESULTS

In this section we detail the training procedure and present
a comparison between our method and other learning-based

d/2\/ @
7

N

ca ®
TR ' 2

i channels
w/2 w

channels

0.5 ;%1.

1= b2
(a) ®

Fig. 2: Squeeze Layer implementation; (a) The original
squeeze layer implemented in 2D. (b) The 3D extension of
the squeeze layer on sparse data. Here, the voxels in black
are empty and are replaced by the average of the non-empty
neighbors after the squeezing.

attribute compression methods, as well as the last available
version of G-PCC (TMC13v14). For all the cases we assume
the geometry is losslessly coded in a different bitstream.

4.1. Training

The training set is a mix of different PCs that represent real
characters from 8i [22], owlii [23], volucap and xdprod [24],
as well as PCs generated from axyz [25] textured mesh bun-
dles, sampled to produce PCs of roughly 1,000,000 points, a
comparable density to the other PCs in our dataset.

We retain for tests and validation the PCs Soldier [22],
Basketball Player [23], Thomas [24], and Facade [2] while
all the other sequences are used for training. We repeat the
same protocol using Longdress and Redandblack [22], as test
set for a broader validation. We choose a percentage of the
frames in each sequence to be used in our framework. To
compensate for the lack of available data for training, an oc-
tree partition of the chosen frames was performed, generating
blocks of size 128 x 128 x 128. With this block size we man-
age to produce a dataset with enough variety of data and the
training process becomes less memory consuming, allowing
for larger batches. We obtained 32809 training blocks and
5413 validation blocks. We trained our architecture with no
data augmentation for 20 epochs with a learning rate of 1e —4
and a batch size of 8. The training was performed in a Tesla
V100 with 32 GB of memory.

4.2. Validation

We trained a network with the same architecture in the same
conditions for one bitrate point, using a naive squeeze layer
instead of our solution to validate our contribution. Our 3D
squeeze layer converges to a smaller loss, meaning we obtain
better PSNR results with fewer bits per occupied voxel, as
seen in Table 1.

Soldier Basketball Facade Thomas
Naive | Ours | Naive | Ours | Naive | Ours | Naive | Ours
3520 | 37.90 | 37.26 | 40.56 | 33.00 | 33.65 | 32.62 | 34.38
0.59 ‘ 0.56 ‘ 030 ‘ 0.18 ‘ 0.69 ‘ 0.59 ‘ 043 ‘ 0.39

PSNR
Bits per input point

Table 1: Ablation study: 3D squeeze layer vs. naive approach
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(a) Or1g1nal PC

(b) GPCC
30.95 dB, 0.094 bpp

(c) Deep-PCAC
29.35 dB, 0.213 bpp

(d) Sparse Tensor PCAC
30.89 dB, 0.097 bpp

(e) NF- PCAC (ours)
32.00 dB, 0.104 bpp

Fig. 4: Visual results of all the different architectures tested

During inference, to avoid blocking artifacts that occur
when coding the divided PC, and since we have a network
that is completely convolutional, the input of the network is
the complete PC, instead of the blocks as used for training.

We compare the performance of the proposed method
with those obtained with a VAE-type architecture similar to
the one presented in [14]. For a fair comparison, we employ
the same hyperprior as used in our architecture. We call this
method Sparse Tensor PCAC. This baseline was trained with
the same dataset, learning rate and batch size. We also present
the results of Deep-PCAC, the architecture used in [12] with
the available weights in their official repository. The PSNR
results were generated using the MPEG metric software [26].

Rate-distortion results are presented in Figure 3 for 4 PCs,
with the Y-PSNR as quality metric. As observed, our method
outperforms all others learning-based methods for similar bi-
trates. However, when it comes to higher bitrates, G-PCC is
still the best performing approach. We also present BD-Rate
and BD-PSNR in Table 2, some qualitative results in Figure 4
and the inference time on CPU and GPU in Table 3. G-PCC
manages to better represent higher frequencies in smaller ar-
eas, such as in the soldier’s helmet, which might explain the
weaker performance on point clouds Facade and Longdress.
This behavior might be due to the average calculations that are
performed in our architecture and the channel average layer
that is used to reduce the number of channels. However, our
method obtains better visual results in the more accentuated
contours such as the fingers or the end of the sleeves, whereas
in G-PCC these areas are more noisy.

G-PCCv14 Sparse Tensor PCAC Deep PCAC
BD-R-Y | BD-PSNR-Y | BD-R-Y | BD-PSNR-Y | BD-R-Y | BD-PSNR-Y
Soldier 10.05 -0.3 45.18 -1.17 308.52 -5.22
Basketball Player -2.15 0.07 40.73 -1.43 870.11 -6.84
Longdress -20.96 0.96 26.93 -0.67 276.22 -3.85
Facade -27.64 0.58 80.35 -0.9 402.75 -2.53
Average -10.18 0.33 48.30 -1.04 464.40 -4.61

Table 2: BD-Rate (%), BD-PSNR (dB) - other methods
against ours

G-PCCv14 Sparse Tensor NF-PCAC (Ours)
PC size CPU CPU GPU CPU GPU

Enc ‘ Dec Enc ‘ Dec | Enc ‘ Dec Enc ‘ Dec Enc ‘ Dec
10-bits | 3,23 | 3,15 | 508 | 4,06 | 0,40 | 0,26 | 49,19 | 4875 | 1,36 | 1,25
11-bits | 14,19 | 11,67 | 20,47 | 16,73 | 1,13 | 0,76 | 172,89 | 171,08 | 4,08 | 3,69

Table 3: Average inference time for test models on CPU
(Intel®. 19-9900K - 3.6GHz, 64GB RAM) and on GPU
(Nvidia®. Tesla ®. V100, 32 GB)

5. CONCLUSION AND FUTURE WORKS

We explore the use of normalizing flows as a tool for com-
pressing point cloud attributes. We first adapt a 2D image
coding architecture based on normalizing flows to the case of
3D PCs. Then, we propose a simple yet effective 3D squeeze
layer that avoids filtering over empty voxels by filling the non-
occupied space with local attribute averages. More sophisti-
cated designs for the squeeze layer are currently under study.

Despite being a first attempt to replace the widely used
VAE with normalizing flows in PC compression, the pro-
posed approach obtains good coding gains compared to pre-
vious learning-based compression methods for PC attributes.
These preliminary results support the conclusion that invert-
ible transforms such as normalizing flows have a significant
potential for PC coding and represent a promising research
direction for future work.
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