NF-PCAC: Normalizing Flow based Point Cloud Attribute Compression

Abstract

Learning-based point cloud (PC) compression is a promising research avenue to reduce the transmission and storage costs for PC applications. Existing learning-based methods to compress PCs have mainly focused on geometry and employ variational autoencoders to learn compact signal representations. However, autoencoders leverage low-dimensional bottlenecks that limit the maximum reconstruction quality, even at high bitrates. In this paper, we propose a different and novel approach to compress PC attributes by using normalizing flows. Since normalizing flows model invertible transforms, the proposed approach can achieve better reconstruction quality than variational autoencoders over a large range of bitrates. Our Normalizing Flow-based Point Cloud Attribute Compression (NF-PCAC) outperforms previous learning-based methods for attribute compression, and has comparable performance as G-PCC v.14, showing the potential of this scheme for PC compression.

Publication
International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2023), IEEE, Jun 2023, Rhodes Island, Greece.
Date
Next
Previous